Nara-auto.ru

Автосервис NARA
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Частотный регулятор скорости для асинхронного двигателя

Частотный регулятор скорости для асинхронного двигателя

Регулировка скорости изменением величины напряжения снижает момент и также увеличивает потери мощности. Регулировка частоты вращения путем изменения числа полюсов осуществляется ступенчато, кроме того, этот способ пригоден только для специальных многоскоростных двигателей с несколькими обмотками неподвижной части.

Асинхронный двигатель – самый распространенный электропривод технологического оборудования. Главная особенность таких электрических машин – постоянная скорость вращения вала. Ее регулировку осуществляют:

  • Механическим способом. Для этого вал подключают к редукторам, муфтам и другим устройствам.
  • Путем изменения числа пар полюсов, величины или частоты питающего напряжения обмоток статора.

Механическое регулирование усложняет кинематическую схему электропривода, ведет к потерям мощности и нерациональному расходу электроэнергии.

Наиболее перспективный метод регулирования уголовной скорости ротора – преобразование частоты питающего напряжения. Этот способ обеспечивает сохранение механических характеристик во всем диапазоне и обладает рядом других преимуществ.

Устройство и принцип работы частотного регулятора

Принцип частотного регулирования основан на зависимости угловой скорости вращения ротора от частоты напряжения на обмотках статора. С появлением IGBT-транзисторов и GTO-тиристоров наибольшее распространение получила схема преобразования частоты на базе широтно-импульсного модулятора.

Такие преобразователи частоты состоят:

  • Из силового выпрямителя с С или LC фильтром для сглаживания пульсаций.
  • Из инвертора на IGBT-транзисторах для преобразования постоянного напряжения в переменное, заданной частоты и амплитуды.
  • Из блока управления для генерации отпирающих силовые транзисторы импульсов.

Переменное напряжение выпрямляется и преобразуется в постоянное, затем снова инвертируется в переменное. Частота на силовом выходе ПЧ определяется длительностью отпирающих силовые транзисторы импульсов, поступающих со схемы управления.

Такой способ регулирования позволяет изменять частоту и амплитуду напряжения в силовой цепи электродвигателя, а значит управлять скоростью вращения ротора и моментом на валу электрической машины.

Структура частотного регулятора

Большинство частотных преобразователей для электродвигателей до 690 В выполнены по схеме двухуровневых инверторов напряжения. Они позволяют моделировать напряжение питания необходимой формы, амплитуды частоты. Такие устройства состоят из неуправляемого выпрямителя, 2-х транзисторных ключей на каждую фазу и конденсатора. Выходное напряжение содержит высшие гармоники, которые сглаживаются индуктивной нагрузкой. Специальные фильтры применяют относительно редко.

К недостаткам такой схемы является ограничение величины выходного напряжения, которое определяется максимальным напряжением полупроводниковых устройств.

Для высоковольтных приводов используются многоуровневые схемы регулирования. Они состоят из нескольких однофазных инверторов, соединенных последовательно. Такая схема позволяет избежать резонансов, обеспечивает высокое быстродействие, снижает скорость нарастания напряжения. Такие ПЧ имеют модульную конструкцию. При выходе из строя одной из ячеек, ее легко заменить. К недостаткам этой схемы относятся необходимость отдельного источника питания для каждого модуля, функции которого выполняет трансформатор специального назначения.

Преобразователи частоты с плавающими конденсаторами позволяют обойтись без входного трансформатора и увеличивать число ячеек в зависимости от требуемой мощности. Такое решение обеспечивает снижение высших гармоник, уменьшает скорость нарастания напряжения.

Для регулировки скорости электродвигателей с повторно-кратковременным режимом работы частыми реверсами применяют инверторы тока. Эти устройства представляют собой управляемый выпрямитель и инвертор на тиристорах. Для уменьшения помех в цепи нагрузки в схему включается расщепленный индуктивный фильтр. Выходное напряжение таких устройств имеет форму аппроксимированной синусоиды. Для сглаживания его формы обязательно включение перед электродвигателем конденсаторов. Главное достоинство таких ПЧ – возможность рекуперации электроэнергии обратно в электросеть.

Прямые преобразователи частоты не содержат конденсаторов. Главное их преимущество – небольшие габариты и значительная мощность нагрузки. Такие устройства используются в составе мощных электроприводов работающих на низких скоростях. ПЧ этого типа выполнены на базе тиристорных преобразователей. На входе прямых ПЧ установлен фазосдвигающий трансформатор, устраняющий низшие гармоники и выполняющий функцию источника питания для каждого преобразователя. Прямые ПЧ требуют сложной схемы управления.

Состав частотных преобразователей

Кроме выпрямителя, ШИМ-модулятора и инвертора, в состав частотного преобразователя входят:

Устройство для ввода данных и обмена информаций с ПК, другими частотными преобразователями.

  • Встроенная энергонезависимая память. В этом устройстве фиксируются аварийные отключения, изменения настроек, а также другие данные.
  • Управляющий контроллер, обеспечивающий реализацию алгоритмов управления, обработку данных с датчиков, защитное отключение при ненормальных режимах работы.
  • ЭМ-фильтр. Это устройство обеспечивает снижение реактивной высокочастотной составляющей, снижающей качество электроэнергии и отрицательно влияющей на работу электродвигателя.
  • Вентилятор и радиатор для принудительного охлаждения и отвода тепла силовых транзисторов.
  • Тормозной прерыватель и другие элементы.

Кроме аппаратной части, преобразователи частоты содержат программное обеспечение. Контроллеры с открытой логикой позволяют вносить изменения в стандартное ПО, поставляемое производителем, и самостоятельно программировать ПЧ.

Однофазные преобразователи частоты

Однофазные асинхронные электродвигатели широко применяются в качестве приводов насосных агрегатов, вентиляторов, маломощных станков. Для регулирования частоты вращения этих электрических машин применяются 2 основных способа:

  • Изменение величины напряжения питания.
  • Изменение частоты питающего напряжения.
Читайте так же:
Регулировка клапанов и форсунок скания hpi

Для регулирования питающего напряжения применяются трансформаторные, автотрансформаторные, тиристорные, симисторные и транзисторные преобразователи. Изменение частоты вращения путем регулирования напряжения имеет ряд серьезных недостатков:

  • Увеличение скольжения и сильный нагрев обмоток статора.
  • Узкий диапазон регулирования.

Кроме того, постоянная составляющая питающего напряжения на выходе тиристорных и симисторных устройств вызовает увеличение шума при работе, рывки и другие нежелательные явления.

Частотное регулирование лишено этих недостатков. Однофазные ПЧ применяются в холодильном оборудовании, системах вентиляции, бытовых насосах.

Такие электроприводы обеспечивают:

  • Стабильную работу однофазного двигателя при любой частоте вращения.
  • Снижение потребления электроэнергии.
  • Возможность автоматической регулировки частоты вращения с обратной связью по изменению одного или нескольких технологических параметров.
  • Удаленное управление и контроль характеристик.
  • Защиту от ненормальных режимов работы и коротких замыканий.
  • Интеллектуальное управление электродвигателем в соответствии с заданным алгоритмом.
  • Возможность пуска без фазосдвигающего элемента.
  • Поддержание необходимого момента на валу во всем диапазоне изменения скорости.

Кроме базовых составляющих, в состав однофазного преобразователя частоты входят ПИД-регулятор, ПЛК-контроллер, устройство для обмена данными с удаленным оборудованием, пульт дистанционного управления. При введении дополнительных настроек допустимо применение трехфазного ПЧ для однофазных двигателей переменного тока.

Таким образом, управление однофазными и трехфазными асинхронными электродвигателями путем изменения частоты значительно превосходит метод регулирования величины напряжения, механические способы.

Как своими руками сделать регулятор оборотов электродвигателя

Как сделать регулятор оборотов

При использовании электродвигателя в различных устройствах и инструментах неизменно возникает необходимость регулировки скорости вращения вала.

Самостоятельно сделать регулятор оборотов электродвигателя не составит труда. Нужно лишь подыскать качественную схему, устройство которой полностью бы подходило к особенностям и типу конкретного электрического двигателя.

Использование частотных преобразователей

Для регулировки оборотов электрического двигателя, работающего от сети с напряжением в 220 и 380 Вольт, могут использоваться частотные преобразователи. Высокотехнологичные электронные устройства позволяют благодаря изменению частоты и амплитуды сигнала плавно регулировать частоту вращения электродвигателя.

В основе таких преобразователей лежат мощные полупроводниковые транзисторы с широкоимпульсными модуляторами.

Преобразователи с помощью соответствующего блока управления на микроконтроллере позволяют плавно изменять показатель оборотов двигателя.

Высокотехнологичные преобразователи частоты используются в сложных и нагруженных механизмах. Современные частотные регуляторы имеют сразу несколько степеней защиты, в том числе по нагрузке, показателю тока напряжения и другим характеристикам. Отдельные модели питаются от электросети с однофазным напряжением в 220 Вольт и могут переделывать напряжение в трехфазные 380 Вольт. Использование таких преобразователей позволяет в домашних условиях использовать асинхронные электрические двигатели без применения сложных схем подключения.

Применение электронных регуляторов

Использование мощных асинхронных двигателей невозможно без применения соответствующих регуляторов оборотов. Такие преобразователи используются для следующих целей:

Регулятор оборотов коллекторного двигателя 220в своими руками

  • Ступенчатый разгон и возможность понижения оборотов двигателя при уменьшении нагрузки позволяет уменьшить потребление электроэнергии. Использование частотных преобразователей с мощными асинхронными двигателями позволяет вдвое сократить расходы на электроэнергию.
  • Защита электронных механизмов. Преобразователи частоты позволяют контролировать показатели давления, температуры и ряд других параметров. При использовании двигателя в качестве привода насоса в емкости, в которую закачивается жидкость или воздух, может быть установлен датчик давления, отвечающий за управление механизмом и предотвращающий его выход из строя.
  • Обеспечение плавного запуска. При запуске электродвигателя, когда мотор сразу начинает работать на максимальных оборотах, на привод приходится повышенная нагрузка. Использование регулятора оборотов обеспечивает плавность запуска, что гарантирует максимально возможную долговечность работы привода и отсутствие его серьезных поломок.
  • Сокращаются расходы на техническое обслуживание насосов и самих силовых агрегатов. Наличие регуляторов оборотов снижает риск поломок отдельных механизмов и всего привода.

Используемая частотными преобразователями схема работы аналогична у большинства бытовых приборов. Похожие устройства также используются в сварочных аппаратах, ИБП, питании ПК и ноутбуков, стабилизаторах напряжения, блоках розжига ламп, а также в мониторах и жидкокристаллических телевизорах.

Несмотря на кажущуюся сложность схемы, сделать регулятор оборотов электродвигателя 220 В будет достаточно просто.

Принцип работы устройства

Принцип работы и конструкция регулятора оборотов двигателя отличается простотой, поэтому, изучив технические моменты, вполне по силам выполнить их самостоятельно. Конструктивно выделяют несколько основных компонентов, из которых состоят регуляторы вращения:

Схема регулятора оборотов коллекторного двигателя

  • Электрический двигатель.
  • Блок преобразователя и микроконтроллерная схема управления.
  • Механизмы и приводы.

Отличием асинхронных двигателей от стандартных приводов является вращение ротора с максимальными показателями мощности при подаче напряжения на обмотку трансформатора. На начальном этапе показатели потребляемого тока и мощность у двигателя возрастает до максимума, что приводит к существенной нагрузке на привод и его быстрому выходу из строя.

При запуске двигателя на максимальных оборотах выделяется большое количество тепла, что приводит к перегреву привода, обмотки и других элементов привода. Благодаря использованию частотного преобразователя имеется возможность плавно разгонять двигатель, что предупреждает перегрев и другие проблемы с агрегатом. Электромотор может при использовании частотного преобразователя запускаться на частоте оборотов 1000 в минуту, а в последующем обеспечивается плавный разгон, когда каждые 10 секунд прибавляется 100−200 оборотов двигателя.

Читайте так же:
Как отрегулировать карбюратор дааз 2107 110701020

Изготовление самодельных реле

Как сделать регулятор оборотов электродвигателя 220в

Изготовить самодельный регулятор оборотов электродвигателя 12 В не составит какого-либо труда. Для такой работы потребуется следующее:

  • Проволочные резисторы.
  • Переключатель на несколько положений.
  • Блок управления и реле.

Использование проволочных резисторов позволяет изменять напряжение питания, соответственно, и частоту вращения двигателя. Такой регулятор обеспечивает ступенчатый разгон двигателя, отличается простой конструкции и может быть выполнен даже начинающими радиолюбителями. Такие простейшие самодельные ступенчатые регуляторы можно использовать с асинхронными и контактными двигателями.

Принцип работы самодельного преобразователя:

Регулятор оборотов электродвигателя 220в без потери мощности

  1. Питание от сети направляется на конденсатор.
  2. Используемый конденсатор полностью заряжается.
  3. Нагрузка передается на резистор и нижний кабель.
  4. Электрод тиристора, соединенный с положительным контактом на конденсаторе, получает нагрузку.
  5. Передаётся заряд напряжения.
  6. Происходит открытие второго полупроводника.
  7. Тиристор пропускает полученную с конденсатора нагрузку.
  8. Конденсатор полностью разряжается, после чего повторяется полупериод.

 регулировка оборотов двигателя 220в

В прошлом наибольшей популярностью пользовались механические регуляторы, выполненные на основе вариатора или шестеренчатого привода. Однако они не отличались должной надежностью и часто выходили из строя.

Самодельные электронные регуляторы зарекомендовали себя с наилучшей стороны. Они используют принцип изменения ступенчатого или плавного напряжения, отличаются долговечностью, надежностью, имеют компактные габариты и обеспечивают возможность тонкой настройки работы привода.

Дополнительное использование в схемах электронных регуляторов симисторов и аналогичных устройств позволяет обеспечить плавное изменение мощности напряжения, соответственно электродвигатель будет правильно набирать обороты, постепенно выходя на свою максимальную мощность.

Для обеспечения качественной регулировки в схему включаются переменные резисторы, которые изменяют амплитуду входящего сигнала, обеспечивая плавное или ступенчатое изменение числа оборотов.

Схема на ШИМ-транзисторе

Регулировать скорость вращения вала у маломощных электродвигателей можно при помощи шин-транзистора и последовательного соединения резисторов в питании. Этот вариант отличается простотой реализации, однако имеет низкий КПД и не позволяет плавно изменять скорость вращения двигателя. Изготовить своими руками регулятор оборотов коллекторного двигателя 220 В с использованием шим-транзистора не составит особой сложности.

Принцип работы регулятора на транзисторе:

  • Используемые сегодня шин-транзисторы имеют генератор пилообразного напряжения частотой в 150 Герц.
  • Операционные усилители используются в роли компаратора.
  • Изменение скорости вращения осуществляется за счёт наличия переменного резистора, управляющего длительностью импульсов.

Транзисторы имеют ровную постоянную амплитуду импульсов, идентичную амплитуде напряжения питания. Это позволяет выполнять регулировку оборотов двигателя 220 В и поддерживать работу агрегата даже при подаче минимального напряжения на обмотку трансформатора.

Благодаря возможности подключения микроконтроллера к ШИМ-транзистору обеспечивается возможность автоматической настройки и регулировки работы электропривода. Такие схемы исполнения преобразователей могут иметь дополнительные компоненты, которые расширяют функциональные возможности привода, обеспечивая работу в полностью автоматическом режиме.

Внедрение автоматических систем управления

Наличие в регуляторах и частотных преобразователях микроконтроллерного управления позволяет улучшить параметры работы привода, а сам мотор может работать в полностью автоматическом режиме, когда используемый контроллер плавно или ступенчато изменяет показатели частоты вращения агрегата. Сегодня в качестве микроконтроллерного управления используются процессоры, которые имеют отличающееся число выходов и входов. К такому микроконтроллеру можно подключить различные электронные ключи, кнопки, всевозможные датчики потери сигнала и так далее.

Регулятор оборотов электродвигателя

В продаже можно найти различные типы микроконтроллеров, которые отличаются простотой в использовании, гарантируют качественную настройку работы преобразователя и регулятора, а наличие дополнительных входов и выходов позволяет подключать к процессору различные дополнительные датчики, по сигналу которых устройство будет уменьшать или увеличивать число оборотов или же полностью прекращать подачу напряжения на обмотки электродвигателя.

Сегодня в продаже имеются различные преобразователи и регуляторы электродвигателя. Впрочем, при наличии даже минимальных навыков работы с радиодеталями и умении читать схемы можно выполнить такое простейшее устройство, которое будет плавно или ступенчато изменять обороты двигателя. Дополнительно можно включить в цепь управляющий симисторный реостат и резистор, что позволит плавно изменять обороты, а наличие микроконтроллерного управления полностью автоматизирует использование электрических двигателей.

Регулирование скорости оборотов двигателя постоянного тока

Моторчик

С точки зрения регулирования скоростью вращения электродвигателей, интересно уравнение для электромеханических характеристик, соответствующее Второму закону Кирхгофа:

ω = U/C×Φ – ΥЯ /( C×Φ) 3 ×M

При описании технических характеристик электродвигателя скорость, выражаемая оборотами в минуту, зачастую называется частотой вращения ν по известному соотношению:

ω = 2p/T = 2pn

Поэтому эти две разноименные величины часто применяются в одном и том же смысле. Скорость w (частота ν) находится в прямой зависимости от напряжения питания U и в обратной от магнитного потока Ф. Исходя из приведенной выше формулы, возникает вывод, что скоростью можно управлять, регулируя сопротивление якоря, магнитный поток и напряжение питания.

1

Методы регулировки

Итак, различают три основных варианта регулирования скоростью:

  1. Изменением напряжения сети. Меняя подводимое питание можно управлять частотой вращения двигателя;
  2. Добавлением пускового реостата в цепь якоря. Регулируя сопротивление, можно уменьшить скорость вращения;
  3. Управлением магнитного потока. Двигатели с электромагнитами дают возможность регулировать поток путем изменения тока возбуждения. Однако нижний предел ν min ограничен насыщением магнитной цепи двигателя, что не позволяет увеличивать в большой степени магнитный поток.
Читайте так же:
Фокус 2 дорестайл как отрегулировать капот

К каждому из вариантов соответствует определённая зависимость механических характеристик.

Методы регулирования применительны к двигателям с различными:

  • типами возбуждения;
  • величиной мощности.

На практике в современных электрических моторах, в связи с недостатками и ограниченности диапазонов, рассмотренные методы не всегда применяются.

Это еще связано с тем, что машины отличаются довольно небольшими КПД, и к тому же не позволяют плавно увеличивать или уменьшать частоту вращения.

Электронные же схемы управления с регуляторами частоты, работающими от аккумуляторной батареи на 12 В, напротив, широко используются. Например, они очень актуальны для управления низковольтными электродвигателями 12 вольт в приборах автоматики, детских игрушках, электрических велосипедах, аккумуляторных детских автомобилях.

2

Принципиальной особенностью метода является то, что ток в цепи якоря и момент, развиваемый электродвигателем, зависят лишь от величины нагрузки на его валу. Регулировка осуществляется с помощью регулятора оборотов электродвигателя.

В течение очень долгого времени тиристорные преобразователи являлись единственным коммерчески доступными регуляторами двигателей. К слову сказать, они по-прежнему самые распространенные на сегодняшний день. Однако с появлением силовых транзисторов стали наиболее популярными регуляторы оборотов двигателя постоянного тока с широтно-импульсной модуляцией. Приведём для примера ниже схему, работающую от источника постоянного тока 12 В.

2

Схема на практике даёт возможность, к примеру, увеличивать либо уменьшать яркость свечения ламп накаливания на 12 вольт.

Последовательно-параллельное управление используется в ситуациях, когда два или более агрегата постоянного тока соединены механически. Схема с последовательным соединением электродвигателей, в которой общее напряжение делится на всех, используется для низкоскоростных приложений. Схема с параллельным соединением машин, имеющих одинаковое напряжение, используется в высокоскоростных применениях.

Заключение

Рассмотренный метод регулировки напряжения сети считается самым эффективным и экономичным вариантом, так как:

  • им обеспечивается широкий диапазон изменения скоростей (wmin / wmax) и лучшие энергетические характеристики (КПД);
  • он работает без каких-либо потерь мощности в силовой цепи якоря.

Управление осуществляется плавно, и по точности регулировка частоты вращения является весьма высокой.

регулировка скорости асинхронного двигателя

Уважаемые Мастера! Посоветуйте ,пожалуйста, каким образом можно регулировать скорость асинхронного двигателя мощностью 0,7 квт.Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать. Слышал ,можно регулировать с помощью конденсаторов, но как и какими?
Заранеее благодарен.

  • Просмотр профиля
  • Личное сообщение

Casper написал :
Уважаемые Мастера! Посоветуйте ,пожалуйста, каким образом можно регулировать скорость асинхронного двигателя мощностью 0,7 квт.Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать. Слышал ,можно регулировать с помощью конденсаторов, но как и какими?
Заранеее благодарен.

Регулировка скорости асинхронного двигателя не такая простая задача. В общем случае для снижения/увеличения скорости при постоянном крутящем моменте следует пропорционально снижать/увеличивать частоту тока и напряжение, что и делает любой нормальный частотный привод. Лучше купить готовый, на такую мощность меньше $200 можно найти.

  • Просмотр профиля
  • Личное сообщение

2Casper ,
174 евро бюджет выдержит ?

  • Просмотр профиля
  • Личное сообщение

Частотник Веспер EI-2MINI S1L (0,75kW) мы брали по 160 причем долларов.

  • Просмотр профиля
  • Личное сообщение

Casper написал :
Уважаемые Мастера! Посоветуйте ,пожалуйста, каким образом можно регулировать скорость асинхронного двигателя мощностью 0,7 квт.Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать. Слышал ,можно регулировать с помощью конденсаторов, но как и какими?
Заранеее благодарен.

Если двигатель трехфазный, то не так уж и сложно. хотя.
недавно делал схемку . 3 плеча по два транзистора IRF840 (мостовачя схема в ключевом режиме на три фазы), транзисторы управляются тремя драйверами IR2112, которые в свою очередь управляются микроконтроллером ATmega8. Скорость регулируется переменным резистором на аналоговом входе контроллера, частота вращения зависит от частоты переключения транзисторов, уровень напряжения зависит от скважности высокочастотного ШИМ заполнения. все очень неплохо работает. Подробности интересуют?

  • Просмотр профиля
  • Личное сообщение

Блок управления асинхронником (до 1 килловата) можно собрать всего на одной специализированной мотороловской микросхеме — MC3PHAC. Все равно, дешевле получится.

Если заинтересовало, можно почитать статью "Микроконтроллеры компании Freescale/Motorola для систем управления электроприводом" в журнале Электронные компоненты за номером ‘7’ от 2004 года.

Freescale Semiconductor — это подразделение полупроводников в Motorola.(freescale.com)

  • Просмотр профиля
  • Личное сообщение

спасибоза помощь, но меня все-таки интересует регулировка скорости на конденсаторах.

  • Просмотр профиля
  • Личное сообщение
Читайте так же:
Скутер шторм регулировка зажигания

Casper
Вы не правы в принципе. На конденсаторах делается сдвиг фазы для питания трехфазника от однофазной сети. Хорошо работает только на определенных оборотах, почему и требует дополнительного пускового конденсатора. Соответственно, можно сделать неправильно, так чтобы не хватило мощности для раскрутки до полных оборотов. Греться будет нехило. Регулировкой оборотов я бы это не назвал.

  • Просмотр профиля
  • Личное сообщение

вставляешь в каждую фазу последовательно 3 одинаковых кон-ра емкостью от10 до 1мкф , чем ниже емкость, тем ниже скорость вращения.
да смотри напряжение не ниже 400вольт чтоб было, а так-же смотри електролитические НЕ ВЛЯПАЙ— взорвутся!

  • Просмотр профиля
  • Личное сообщение

Кстати, электролиты тоже можно, но парой последовательно встречно, диодами зашунтированные.
P.S. Изврат все это.

  • Просмотр профиля
  • Личное сообщение

astronom написал :
вставляешь в каждую фазу последовательно 3 одинаковых кон-ра емкостью от10 до 1мкф , чем ниже емкость, тем ниже скорость вращения.

  • Это за счёт потери мощности. На такой установке можно только ножи точить.
  • Просмотр профиля
  • Личное сообщение

Casper написал :
Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать.

Так если надо только ступенчато и не плавно, то может простыми шкивами с ремнем обойтись?
(Как у сверлильного станка).

  • Просмотр профиля
  • Личное сообщение

Casper написал :
Уважаемые Мастера! Посоветуйте ,пожалуйста, каким образом можно регулировать скорость асинхронного двигателя мощностью 0,7 квт.Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать. Слышал ,можно регулировать с помощью конденсаторов, но как и какими?
Заранеее благодарен.

слышал что повысить частоту (соответственно скорость) в два раза можно с помощью диодного моста.

  • Просмотр профиля
  • Личное сообщение

Casper написал :
Уважаемые Мастера! Посоветуйте ,пожалуйста, каким образом можно регулировать скорость асинхронного двигателя мощностью 0,7 квт.Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать. Слышал ,можно регулировать с помощью конденсаторов, но как и какими?
Заранеее благодарен.

Подключение трехфазного асинхронного электродвигателя в однофазную сеть через конденсатор, со схемой соединения обмоток треугольник

Подключение трехфазного асинхронного электродвигателя в однофазную сеть через конденсатор, со схемой соединения обмоток звезда

  • Просмотр профиля
  • Личное сообщение

слышал что повысить частоту (соответственно скорость) в два раза можно с помощью диодного моста.

Можно. Вот только напряжение при этом снизится, тоже вдвое.

  • Просмотр профиля
  • Личное сообщение

Casper написал :
Уважаемые Мастера! Посоветуйте ,пожалуйста, каким образом можно регулировать скорость асинхронного двигателя мощностью 0,7 квт.Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать. Слышал ,можно регулировать с помощью конденсаторов, но как и какими?
Заранеее благодарен.

Щас всех убью и съем. Один останусь. По детству рисовал курсовую по САР ТВС с ЧПУ.
Там стояли контроллеры Кемрос — Кемток, кажись болгарские. Привода суппорта через винтовую пару (без самоторможения) были выполнены НА АСИНХРОННЫХ ДВИГАТЕЛЯХ. ВОт а теперь все замерли: смертельный номер. (ЛИТАВРЫ) ТОчность выдержки этого привода составляла. УГЛОВЫЕ МИНУТЫ.
И все на мелкой логике. ВАУ. Матарола.

Теперь с небес на землю: ротор на асинхроннике — белка? Иди со щетками? Кондерами, это скорее за счет скольжения. А вообще, лучше дараматизируйте, то есть конкретизируйте задачу. Ибо если это привод слежения телескопа — то одно. А если осевой вентилятор из приточки — совершенно третье.
Приятного погружения в инферно электропривода. (а то в свое время как меня преподы этими электромашинами затиранили. )

Частотное регулирование асинхронного двигателя

Unfortunately, you are using an outdated browser. Please update your browser to improve performance, quality of the displayed material, and improve security.

Частотное регулирование асинхронного двигателя

Частотник или (полностью) частотный преобразователь позволяет осуществлять частотное регулирование электродвигателя. Регулирование скорости (частоты) при эксплуатации данного устройства подразумевает возможности плавного изменения частоты оборотов ротора в большую или в меньшую сторону относительно номинальной.

  • транспортеров;
  • насосного оборудования;
  • вентиляторов и другой техники

Преимущества

Электрический привод постоянного тока не отличается особой надежностью: во время эксплуатации имеет место искрение щеток, что быстро изнашивает коллектор. Во взрывоопасной среде или запыленных помещениях такое устройство использовать нельзя. К тому же его цена остается довольно внушительной.

  • проще в плане конструкции;
  • дешевле стоит;
  • более надежен, потому что не имеет подвижных контактов;
  • меньше по размеру при аналогичной мощности (проще установить, легче спланировать систему);
  • легче.

Два важных преимущества асинхронных двигателей – их простое производство и неприхотливость по части обслуживания. Есть, правда, и недостатки, к которым относится сложность организации изменения скоростных характеристик электродвигателя. Здесь не подходят классические решения – изменение напряжения через дополнительные сопротивления в цепи обмоток.

Читайте так же:
Регулировать клапана ман командор

Хотя теория частотного регулирования разработана еще в 30-е годы XX века, реализовать управление асинхронным электродвигателем с помощью регулятора частоты до недавнего времени было сложно. Причина – высокая стоимость производства и (соответственно) продажи преобразователей частоты.

Ситуация изменилась с появлением схем с IGBT-транзисторами (БТИЗ, биполярные транзисторы с изолированным затвором, производительные микропроцессорные системы). На их базе производителям из Японии, Европы и США удалось снизить стоимость изготовления частотного преобразователя, не теряя в его технических характеристиках.

Виды управления скоростями

Существует несколько видов управления асинхронным электродвигателем, среди которых самым распространенным в последние годы стал метод векторного или векторного бездатчивокового регулирования скорости. Он нередко встречается в частотном преобразователе, который изначально применяет скалярное управление без клемм для присоединения датчика скорости.

Собственно, вид регулирования асинхронного двигателя частотным преобразователем , зависит от класса последнего. А делят регуляторы частоты по нескольким признакам.

  1. По типу управления – на устройства ручного и автоматического регулирования.
  2. В зависимости от вида выходной нагрузки частотный преобразователь делится по способу исполнения:
    • на устройства для электроприводов насосного и вентиляторного оборудования;
    • механизмы для привода общепромышленного назначения;
    • частотные преобразователи для электродвигателей, которые эксплуатируются в сложных условиях (с перегрузками).

Частотные преобразователи последних поколений, кроме разных по исполнению вариаций, могут иметь еще и разный набор функций. К последним относятся 2 вида управления (ручной и автоматический) скоростью вращения и его направлением, потенциометр на основной панели, система настройки диапазонов выходных частот (0–800 Гц).

Принцип

Задачи частотника в системе частотного регулирования асинхронного электродвигателя:

  • изменение показателей электродвигателя в автоматическом режиме через обработку сигналов с датчиков, установленных на периферии;
  • приведение привода в действие, согласно настройкам (программируемый алгоритм работы по времени);
  • поддержание функции автоматического восстановления первоначальных настроек работы в случаях кратковременных остановок (прерываний питания);
  • удаленное управление переходными процессами с пульта; от перегрузок.

Принцип частотного регулирования асинхронного двигателя выражен в формуле:

Формула - Принцип частотного регулирования

Его суть: изменяя частоту f1 питающего напряжения, можно менять угловую скорость магнитного поля статора при неизменном количестве пар полюсов, обозначенных в формуле p. Такой метод обеспечивает оптимальные характеристики работы асинхронного электродвигателя, но и оптимальные показатели регулирования частоты:

  • мягкое (плавное) регулирование скоростей в большом диапазоне частоты;
  • повышенная жесткость механических показателей;
  • регулирование частоты вращений вала без повышения скольжения электродвигателя (за счет чего потери мощности сводятся к предельному минимуму).

Одним из условий частотного регулирования скорости асинхронного двигателя является одновременное с частотой вращений изменение напряжения, которое к нему подводится. Это нужно для повышения энергетических показателей работы электропривода (КПД, коэффициенты мощности, способности выдерживать перегрузки).

Закон частотного регулирования асинхронного двигателя (закон напряжения) определяется типом момента нагрузки (обозначается как Мс).

  • Когда Мс = const, напряжение на статоре регулируется пропорционально частоте вращения, согласно выражению:
  • Если характер момента нагрузки – вентиляторный, то применяется выражение:
  • Если момент нагрузки обратно пропорционален частоте:

Другими словами, для реализации поставленных перед ним задач (плавное бесступенчатое частотное регулирование частоты оборотов вала асинхронного электродвигателя) частотный преобразователь должен одновременно:

  • менять частоту оборотов;
  • регулировать на статоре напряжение.

Технические характеристики для учета

  • Диапазон изменения – Д. Представляет собой предел, до которого возможно регулирование. Вычисляется как соотношение минимальной и максимальной частоты вращения.
  • Степень плавности частотного регулирования. Рассчитывается по минимальному скачку частоты вращения вала электродвигателя при переходе от одной механической характеристики к другой.
  • Зона регулирования (направление изменения вращения). Номинальные условия эксплуатации задают естественный набор характеристик электродвигателя, которые при управлении частотой вращения начнут изменяться. На выходе асинхронный электродвигатель получит новые – искусственные – характеристики, которые, как правило, ниже, чем естественные.

Правила регулирования частоты

При этом важно учитывать следующее правило. При повышении количества оборотов вала относительно паспортных данных электродвигателя частота его источника питания не должна увеличиваться более, чем в 1,5–2 раза от номинальной.

Такой метод управления – частотное регулирование асинхронного двигателя – более всего оправдывает себя в механизмах и короткозамкнутым ротором. В случае с ним ввиду отсутствия скольжения потери мощности остаются минимальными, а выходные механические характеристики – с высокой жесткостью.

Плюсы электродвигателя с регулированием скорости

Основной плюс электродвигателя, управляемого с помощью частотного преобразователя, – высокий опрокидывающий момент. Это он обеспечивает стабильную эксплуатацию электропривода и подключенного к нему оборудования в большом диапазоне частот вращения.

Благодаря данному факту применение асинхронных электродвигателей с регулированием скорости позволяет отказаться от ряда механизмов (снижается потеря мощности, к которой приводит их использование), получая высокий КПД.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector