Nara-auto.ru

Автосервис NARA
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Обзор бесколлекторных двигателей: все, что нужно знать

Обзор бесколлекторных двигателей: все, что нужно знать

Возникновение бесколлекторных двигателей объясняется необходимостью создания электрической машины с множеством преимуществ. Бесколлекторный двигатель представляет собой устройство без коллектора, функцию которого берет на себя электроника.

БКЭПТ — бесколлекторные электродвигатели постоянного тока, могут быть мощностью, примером, 12, 30 вольт.

Выбор подходящего двигателя

Чтобы подобрать агрегат, необходимо сравнить принцип работы и особенности коллекторных и бесколлекторных двигателей.

Коллекторный двигатель и двигатель ФК 28-12 бесколлекторный

Слева направо: коллекторный двигатель и двигатель ФК 28-12 бесколлекторный

Коллекторные стоят меньше, но развивают невысокую скорость вращения крутящего момента. Они работают от постоянного тока, имеет небольшой вес и размер, доступный ремонт по замене деталей. Проявление негативного качества выявляется при получении огромного количества оборотов. Щетки контактируют с коллектором, вызывая трение, что может повредить механизм. Работоспособность агрегата снижается.

Щеточки не только требуют ремонта из-за быстрого износа, но и могут привести к перегреву механизма.

Главным преимуществом бесколлекторного двигателя постоянного тока является неимение контактов крутящего момента и переключения. Значит отсутствие источников потерь, как в двигателях с постоянными магнитами. Их функции выполняют транзисторы МОП. Ранее их стоимость была высокой, поэтому они не были доступны. Сегодня цена стала приемлемой, а показатели значительно улучшились. При отсутствии в системе радиатора, мощность ограничивается от 2,5 до 4 ватт, а ток работы от 10 до 30 Ампер. КПД бесколлекторных электродвигателей очень высокий.

Вторым преимуществом выступает настройки механики. Ось устанавливается на широкоподшипники. В структуре нет ломающих и стирающихся элементов.

Единственным минусом является дорогой электронный блок управления.

Шпиндель ЧПУ Porter Cable 690

Шпиндель ЧПУ Porter Cable 690

Рассмотрим, пример механики ЧПУ станка со шпинделем.

Замена коллекторного двигателя на бесколлекторный оградит от поломки шпинделя для ЧПУ. Под шпинделем имеется в видувал, обладающий правыми и левыми оборотами крутящего момента. Шпиндель для ЧПУ обладает большой мощностью. Скорость крутящего момента контролируется регулятором сервотестором, а обороты управляются автоматом контроллером. Стоимость ЧПУ со шпинделем около 4 тысяч рублей.

Принцип работы

Главная особенность механизма — отсутствие коллектора. А постоянные магниты установлены у шпинделя, является ротором. Вокруг него располагаются проволочные обмотки, которые имеют различные магнитные поля. Отличием бесколлекторных моторов 12 вольт является сенсор управления ротором, расположенный на нем же. Сигналы подаются в блок регулятора скорости.

Устройство БКЭПТ

Схему расположения магнитов внутри статора обычно применяют для двухфазных двигателей с небольшим количеством полюсов. Принцип крутящего момента вокруг статора применяют при необходимости получить двухфазный двигатель с небольшими оборотами.

8 магнитов, формирующих 4 полюса

На роторе расположены четыре полюса. Магниты в форме прямоугольника устанавливаются, чередуя полюсы. Однако не всегда количество полюсов равняется числу магнитов, которых может быть 12, 14. Но количество полюсов должно быть четным.Несколько магнитов могут составлять один полюс.

На картинке изображено 8 магнитов, формирующих 4 полюса. Момент силы зависит от мощности магнитов.

Датчики и их отсутствие

Регуляторы хода подразделяются на две группы: с датчиком положения ротора и без.

Токовые силы подаются на обмотки двигателя при особом положении ротора.Его определяет электронная система с помощью датчика положения. Они бывают разнообразных типов. Популярный регулятор хода — дискретный датчик с эффектом Холла. В двигателе на три фазы на 30 вольт будет использовано 3 датчика. Блок электроники постоянно располагает данными о положении ротора и направляет напряжение вовремя в нужные обмотки.

Датчик Холла

Датчик ХоллаРаспространенное приспособление, изменяющие свои выводы при переключении обмоток.

Устройство с разомкнутым контуром измеряет ток, частоту вращения. ШИМ каналы присоединяются к нижней части системы управления.

Три ввода присоединяются к датчику Холла. В случае изменения датчика Холла, начинается процесс переработки прерывания. Для обеспечения быстрого реагирования обработки прерывания подключается датчик Холла к младшим выводам порта.

Сигналы датчика холла в момент вращения

Сигналы датчика холла в момент вращения

Использование датчика положения с микроконтроллером

Микроконтроллеры AVR фирмы Atmel

Микроконтроллеры AVR фирмы Atmel

Контроллер силы каскада лежит в основе AVR ядра, который обеспечивает грамотное управление бесколлекторным двигателем постоянного тока. AVR представляет собой чип для выполнения определенных задач.

Принцип работы регулятора хода может быть с датчиком и без. Программа платы AVR осуществляет:

  • пуск двигателя максимально быстро без использования внешних дополнительных приборов,
  • управление скоростью одним внешним потенциометром.

Электронный блок управления СМА LG 6871ER1007C

Электронный блок управления СМА LG 6871ER1007C

Отдельный вид автоматического управления сма, используется в стиральных машинах.

Отсутствие датчика

Бездатчиковый регулятор

Для определения положения ротора необходимо проводить измерение напряжения на незадействованную обмотку. Данный способ применим при вращении двигателя, иначе он не будет действовать.

Бездатчиковые регуляторы хода изготавливаются легче, это объясняет их широкое распространение.

Контроллеры обладают следующими свойствами:

  • значение максимального постоянного тока,
  • значение максимального рабочего напряжения,
  • число максимальных оборотов,
  • сопротивление силовых ключей,
  • импульсная частота.

При подключении контроллера важно делать провода, как можно короче. Из-за возникновения бросков тока на старте. Если провод длинный, то могут возникнуть погрешности определения положения ротора. Поэтому контроллеры продаются с проводом 12 — 16 см.

Контроллеры обладают множеством программных настроек:

  • контроль выключения двигателя,
  • плавное или жёсткое выключение,
  • торможение и плавное выключение,
  • опережение мощности и КПД,
  • мягкий, жесткий, быстрый старт,
  • ограничения тока,
  • режим газа,
  • смена направления.
Читайте так же:
Регулировка датчик уровня топлива 2109

Контроллер LB11880

Контроллер LB11880, изображенный на рисунке, содержит драйвер бесколлекторного двигателя мощной нагрузки, то есть можно запустить двигатель напрямую к микросхеме без дополнительных драйверов.

Понятие ШИМ частоты

Когда происходит включение ключей, полная нагрузка подаётся на двигатель. Агрегат достигает максимальных оборотов. Для того чтобы управлять двигателем, нужно обеспечить регулятор питания. Именно это осуществляет широтно-импульсная модуляция (ШИМ).

Устанавливается необходимая частота открытия и закрытия ключей. Напряжение меняется с нулевого на рабочее. Чтобы управлять оборотами, необходимо наложить сигнал ШИМ на сигналы ключей.

Схема регулятора оборотов двигателя постоянного тока на напряжение 12 вольт

Схема регулятора оборотов двигателя постоянного тока на напряжение 12 вольт

Сигнал ШИМ может быть сформирован аппаратом на несколько выводов. Или создать ШИМ для отдельного ключа программой. Схема становится проще. ШИМ сигнал имеет 4— 80 килогерц.

Увеличение частоты приводит к большему количеству процессов перехода, что даёт выделение тепла. Высота частоты ШИМ повышает количество переходных процессов, от этого происходят потери на ключах. Маленькая частота не даёт нужную плавность управления.

Чтобы уменьшить потери на ключах при переходных процессах, ШИМ сигналы подаются на верхние или на нижние ключи по отдельности. Прямые потери рассчитываются по формуле P=R*I2, где P — мощность потерь, R — сопротивление ключа, I — сила тока.

Меньшее сопротивление минимизируют потери, увеличивает КПД.

Система arduino

Часто для управления бесколлекторными двигателями используется аппаратная вычислительная платформа arduino. В основе находится плата и среда разработки на языке Wiring.

В Плату arduino входит микроконтроллер Atmel AVR и элементная обвязка программирования и взаимодействия со схемами. На плате имеется стабилизатор напряжения. Плата Serial Arduino представляет собой несложную инвертирующую схему для конвертирования сигналов с одного уровня на другой. Программы устанавливаются через USB. В некоторых моделях, например, Arduino Mini, необходима дополнительная плата для программирования.

Язык программирования Arduino используется стандартный Processing. Некоторые модели arduino позволяют управлять несколькими серверами одновременно. Программы обрабатывает процессор, а компилирует AVR.

Проблемы с контроллером могут возникать из-за провалов напряжения и чрезмерной нагрузке.

Крепеж двигателя

Моторама 45/50/58

Моторама— механизм крепления двигателя. Применяется в установках двигателей. Моторама представляет собой взаимосвязанные стержни и элементы каркаса. Моторамы бывают плоскими, пространственными по элементам. Моторама одиночного двигателя 30 вольт или нескольких устройств. Силовая схема моторамы состоит из совокупности стержней. Моторама устанавливается в сочетании ферменных и каркасных элементов.

Бесколлекторный электродвигатель постоянного тока незаменимый агрегат, применяемый как в быту, так и в промышленности. Например, ЧПУ станок, медицинское оборудование, автомобильные механизмы.

БКЭПТ выделяются надежностью, высокоточным принципом работы, автоматическим интеллектуальным управлением и регулированием.

Бесколлекторный мотор

Brushless motor.jpg

Бесколлекторные моторы (электродвигатели) (анг. brushless motor) пришли в моделизм сравнительно недавно.

Отличия бесколлекторных моторов от коллекторных моторов:

  • питаются трёхфазным переменным током, поэтому для их работы необходим специальный контроллер (регулятор скорости), преобразующий постоянный ток от аккумуляторных батарей в переменный.
  • ротор с магнитами вращается вокруг неподвижного статора с электромагнитной катушкой.

Содержание

Преимущества [ править ]

(перед коллекторными моторами)

  • Бесколлекторные двигатели эффективно работают в более широком диапазоне оборотов и имеют более высокий КПД. Конструкция двигателя при этом проще, в ней нет щеточного узла (который работает постоянно в режиме трения, создает искры и в итоге потерю энергии)
  • Бесколлекторные моторы практически не изнашиваются, поэтому отсутствует необходимость в техническом обслуживании (кроме случаев выхода из строя подшипников).
  • Большинство бесколлекторных моторов не боятся влаги (могут работать полностью погружёнными под воду) при условии изоляции фазовых проводов, катушки электромагнита намотаны изолированным проводом по умолчанию. Но следует иметь в виду, что при длительной работе в воде неизбежно вымывается смазка из подшипников и они могут закиснуть, заржаветь.
  • Возможность использования в воспламеняемой, взрывоопасной и агрессивной среде (из-за отсутствия искр).
  • Большая перегрузочная способность по моменту.
  • Высокие энергетические показатели (КПД более 90 %)
  • Генерация более низкого уровня акустического и электрического шума по сравнению с универсальными коллекторными двигателями постоянного тока.
  • Хорошее соотношение массогабаритных характеристик и мощности

Недостатки [ править ]

  • Относительно сложная система управления двигателем.
  • Относительно высокая стоимость двигателя, обусловленная использованием дорогостоящих материалов в конструкции ротора (магниты, подшипники).
  • Из-за открытого дизайна, двигатели очень чувствительны к магнитящейся пыли. Даже небольшого количества достаточно, чтобы облепить магниты ротора, засорить магнитный промежуток и заклинить мотор.

Обозначения бесколлекторных моторов [ править ]

Часто обозначение бесколлекторного мотора тесно связано с его геометрическими и электрическими параметрами.

Рассмотрим обозначение на примере мотора: Tower Pro 2408-21T

  • первые две цифры (24) — обозначают диаметр статора (иногда ротора) в мм
  • вторые две цифры (08) — обозначают длину каждого магнита в моторе в мм
  • далее может следовать одна или две цифры (21) — это количество витков на каждом зубе статора
  • еще бывает в конце буква T (или символ Δ) — обозначающий намотку типа «дельта» («треугольник») ИЛИ буква Y (или символ *) — говорящий о намотке типа «звезда».

При большем диаметре ротора (статора) получается больший крутящий момент, при прочих равных условиях. Длина магнитов, также как и диаметр ротора, влияет на крутящий момент мотора.

С витками работает соотношение: «меньше витки — больше обороты». Если необходимо поставить небольшой винт и получить высокие обороты, то необходимо выбирать мотор с небольшим количеством витков. Если задача крутить большой винт на небольших оборотах (Slow Flyer) — следует выбирать мотор с большим количеством витков.

Читайте так же:
Регулировка карбюратора к 133 заз 968м

Конструкция [ править ]

По конструкции бесколлекторные моторы делятся на две группы: inrunner и outrunner.

  • inrunner — имеют расположенные по внутренней поверхности корпуса обмотки, и вращающийся внутри обмоток магнитный ротор.
  • outrunner — имеют неподвижные обмотки, внутри двигателя, вокруг которых вращается корпус с помещенными на его внутреннюю стенку постоянными магнитами.

Количество полюсов магнитов, используемых в бесколлекторных двигателях, может быть разным. По количеству полюсов можно судить о крутящем моменте и оборотах и двигателя.

  • Моторы с двухполюсными роторами имеют наибольшую скорость вращения при наименьшем крутящем моменте. Эти моторы по конструкции могут быть только «инраннерами». Такие двигатели часто продаются уже с закреплёнными на них планетарными редукторами, так как их обороты слишком велики для прямого вращения пропеллера. Иногда такие моторы используют и без редуктора — например, ставят на гоночные авиамодели.
  • Моторы с большим количеством полюсов имеют меньшую скорость вращения, но зато больший крутящий момент. Такие моторы позволяют использовать пропеллеры большого диаметра, без необходимости применять редукторы.

Вообще, пропеллеры большого диаметра и небольшого шага, при относительно низкой частоте вращения обеспечивают большую тягу, но сообщают модели небольшую скорость, в то время как маленькие по диаметру пропеллеры с большим шагом на высоких оборотах обеспечивают высокую скорость, при сравнительно небольшой тяге. Таким образом, многополюсные моторы идеально подходят для моделей, которым нужна высокая тяговооруженность, а двухполюсные без редуктора — для скоростных моделей. Для более точного подбора двигателя и пропеллера к определенной модели, можно воспользоваться специальными инструментами для расчётов.

Также бесколлекторные моторы, и соответственно регуляторы хода для них, можно разделить на 2 типа: с датчиками положения ротора и без них. Моторы без датчиков проще в изготовлении, поэтому большинство моторов и контроллеров в настоящее время именно такие (кроме специальных автомодельных).

Производителей бесколлекторных моторов и регуляторов к ним очень много. Конструктивно и по размерам бесколлекторные двигатели тоже сильно различаются. Более того, самостоятельное изготовление бесколлекторных двигателей на основе деталей от CD-приводов и других промышленных бесколлекторных моторов стало весьма распространенным явлением в последнее время. Возможно, именно по этой причине у бесколлекторных двигателей сегодня нет даже такой приблизительной общей классификации как у коллекторных собратьев.

FAQ [ править ]

Мотор крутится не в ту сторону [ править ]

Чтобы поменять направление вращения бесколлекторного мотора, достаточно поменять местами подключение любых двух из трёх проводов (которые идут к мотору).

Могут ли моторы CW/CCW вращаться в другую сторону [ править ]

На моторах для мультикоптеров часто есть обозначение направления вращения CW/CCW. Они могут вполне вращаться и в обратную, не предназначенную для них сторону, если поменять местами 2 провода подключения (если в моторе нет встроенного регулятора). Мотор не сломается и его ресурс не уменьшится.

Следует иметь в виду, что обозначения CW/CCW ставятся в соответствии с крепежом пропеллера: направлением резьбы для затяжки пропеллера. То есть если мотор будет крутиться в обратном для него направлении, то возможно самооткручивание гайки и отстрел пропеллера. В таком случае следует применять самозатягивающиеся (нейлоновые) крепления.

Бесколлекторный мотор плохо стартует [ править ]

Мотор плохо стартует, то есть начинает вращаться, а потом останавливается.

  • Большинство причин кроется в больших скачках тока и, как следствие, провалах питающего напряжения. В первую очередь проверьте провода до аккумулятора. Пробную проверку лучше производить на той длине проводов, которые даны изготовителем, или короче.
  • Попробуйте снять нагрузку с мотора и проверить его на холостом ходу. Если так всё в порядке, а при установке пропеллера возникают проблемы, только дергается в одном направлении, попробуйте поставить мягкий старт или увеличить время акселерации. Также здесь поможет установка плавного выключения мотора.
  • Контроллеры, у которых есть ограничение тока, всегда имеют индикацию этого режима — это поможет установить, произошло срабатывание токовой защиты или нет.

Чем и как смазывать подшипники [ править ]

  • Смазывать надо «быстроходными» маслами, т. е. жидкими. Нижний минимум по вязкости — трансмиссионное масло для мотоциклетных коробок. А лучше купить обычную «веретёнку». Купите один пузырёк, и закроете вопрос на несколько лет.
  • Если подшипник разбирать, то внутрь зубочисткой «шрус 4» и пару капель синтетической трансмиссионки. Аккуратно собрать, протереть и прокрутить — всё само перемешается.
  • Если подшипник не разбирать, то один из лучших методов смазки — это создать вакуум с помощью шприца. Внутрь шприца налить синтетику для трансмиссии, поместить туда подшипники, и поршень — на разряжение.
  • Как это делалось в недалёкую бытность, на большинстве автобаз, ремонтных мастерских и т.д. (способ наших дедов): маленькая ёмкость, смазка, подшипник, и на огонь. Когда сильно нагрелось, снимаем и остужаем. Воздух при нагреве выходит, а при остывании засасывает смазку пока она тёплая и не очень вязкая. Конечно, раньше не было силиконов и других крутых смазок, но наши предки таким образом даже густые смазки в подшипники загоняли.
  • При потенциальной опасности попадания воды на/в моторы (полёты вблизи или над водоёмами) полезно заменить все подшипники в моторах на нержавеющие. Иначе от малейшего контакта с (особенно — морской) водой (и даже без контакта) подшипники может заклинить. Ещё более радикальное средство – подшипники с шариками из двуокиси циркония, но стоят дорого.
Читайте так же:
Как правильно отрегулировать кулису на мазе

Моторы загрязнились [ править ]

Для чистки моторов от грязи (например, после падения) понадобится разборка, маленькая кисточка с жёстким ворсом (зубочистка) и сжатый воздух. Необходимо избежать попадания жидкостей в подшипники, не только воды или спирта, но и органических растворителей типа WD-40 или бензина, иначе подшипникам быстро выйдут из строя: кроме ржавчины и вымывания смазки могут быть микрогидроудары и кавитация при вращении шариков по влажной обойме.

Как измерять температуру мотора [ править ]

Считается, что температура мотора не должна превышать 80°С. Температуру следует измерять в процессе работы мотора, т.к. он обдувается проходящими массами воздуха от пропеллера, если он полностью не закрыт. Примерно 30° температуры мотор обычно сразу добирает в течении 10 секунд после остановки при работе на максимальной мощности. Проверено инфракрасным датчиком температуры.

Где найти стопорные шайбы (кольца) для валов [ править ]

  • В местных магазинах с названиями «крепёж», «метизы», в том числе на строительных рынках. Ключевые слова для продавцов:
  • Искать в интернет-магазинах можно по ключевым словам «стопорные шайбы», «стопорные кольца», «упорные шайбы», «упорные кольца», «ГОСТ 11648», «ГОСТ 13942», «DIN 6799»
  • Искать в зарубежных интернет-магазинах можно по ключевым словам E-Clips, DIN 6799
  • Сделать самому из обычной шайбы подходящего размера, сделав в ней разрез.
  • В старой технике (например, советском кассетнике).

Многожильный или одножильный провод намотки [ править ]

При прочих равных многожильный провод обеспечивает лучшее заполнение окна, в то время как одножильный гораздо лучше держит перегрузки за счёт лучшего охлаждения.

Контроллер для bldc мотора своими руками

Эта статья предоставит важную теорию и полезные схемы драйверов двигателей жестких дисков, которые можно заставить крутиться с разной скоростью и разных направлениях, а уж где это использовать — решайте сами. Прежде всего обратите внимание, что обычный двигатель шпинделя жесткого диска (HDD) на самом деле является бездатчиковым трехфазным бесколлекторным двигателем постоянного тока BLDC.

Как следует из названия, в бесщеточном (бесколлекторном) двигателе щетки не используются. Бесщеточный двигатель преодолевает потребность в механическом коммутаторе, меняя настройку на обратную, то есть катушки становятся статором, а постоянные магниты становятся частью ротора. Вращение двигателя достигается за счет изменения направления магнитных полей, создаваемых неподвижными катушками. Поскольку ротор представляет собой постоянный магнит, ему не нужен ток, что устраняет необходимость в щетках и коммутаторе. Чтобы контролировать вращение можно регулировать величину и направление тока в этих неподвижных катушках извне.

Типичный бесколлекторный двигатель постоянного тока с тремя катушками на статоре будет иметь шесть проводов, но в большинстве конструкций три провода будут подключены внутри, а остальные три выходят наружу. Также обратите внимание, что трехфазный бесщеточный двигатель требует трех датчиков Холла для определения положения ротора. В зависимости от физического положения этих датчиков, существует два типа выходных сигналов — фазовый сдвиг 60 ° и фазовый сдвиг 120 °. Комбинируя сигналы трех датчиков Холла, можно определить точную последовательность электронной коммутации. Но в бессенсорном бесщеточном моторе сигналы обратной электродвижущей силы (BEMF) контролируются драйвером для коммутации сигнала вместо положения, определяемого датчиками Холла. Вот поперечное сечение трехфазного бесщеточного двигателя на изображении ниже.

Это 4-х проводный двигатель BLDC от жесткого диска. HDD BLDC имеет четыре соединительных провода вместо трех упомянутых проводов ABC (часто обозначаемых как UVW). И 4-х контактный двигатель BLDC — это обычный трехфазный двигатель BLDC с выведенным центральным отводом. Если у двигателя есть фазы сопротивлением по 1 Ом каждая, то он должен давать 1 Ом от центрального ответвления до каждой фазы, 2 Ом между фазами. Хотя некоторые драйверы двигателей BLDC используют центральный отвод для измерения BEMF для коммутации.

Существует два типа мотора BLDC. Первый имеет встроенные датчики Холла для определения положения ротора, а второй — бессенсорный — не имеет датчика. Коммутация бессенсорного типа обычно основана на BEMF, генерируемой в обмотках статора.

Как запустить двигатель HDD 4-х проводной

Так как можно управлять двигателем HDD BLDC? Чтобы вращать его, нужно контролировать направление и синхронизацию тока в катушках статора, но этот метод управления более сложен. В продаже доступен широкий спектр бессенсорных микросхем драйверов двигателей BLDC, например DRV10866, цена модуля вполне доступная в интернет-магазинах. Двигатель работает с ним довольно хорошо — правда крутящий момент невысокий, что не удивительно, учитывая вход от источника питания 5 В.

DRV10866 — довольно популярная микросхема драйвера трехфазного бесщеточного двигателя без датчиков, интегрированная с шестью МОП-транзисторами с пиковыми токами до 680 мА. Она также предлагает синхронное выпрямление с широтно-импульсной модуляцией (PWM) и бессенсорную запатентованную схему управления обратной ЭДС (BEMF). Но есть и другое решение — универсальная плата драйвера двигателя BLDC для жестких дисков. Плата может использоваться для управления как 3-проводными, так и 4-проводными трехфазными бесщеточными двигателями постоянного тока. Кроме того тут есть несколько полезных опций, таких как управление скоростью и направлением вращения двигателя.

Читайте так же:
Регулировка реле времени abb at3

Описание платы драйвера двигателя

Контроллер платы драйвера бесщеточного двигателя 5 В — 12 В постоянного тока для двигателя жесткого диска.

  • Подходит для бесколлекторных моторов без датчика.
  • Защита от обратного напряжения
  • Защита от повышенного тока
  • Напряжение привода: 5-12 В
  • Рабочий ток: до 1,2 А
  • Диапазон скорости: 0-100%
  • Управление вращением: CW и CCW

Плата сконструирована так, что требуются проводные соединения только с двигателем и источником питания. Минимальное рекомендуемое Vin составляет 5 В, а максимальное — 12 В постоянного тока. Потенциометр встроенного регулятора меняет скорость двигателя. Кроме того, есть две перемычки для выбора 3-проводного / 4-проводного мотора и выбора прямого / обратного направления. Для нормальной работы все перемычки должны быть установлены. В общем вполне удобное решение для управления трехфазными бессенсорными бесщеточными двигателями.

Плата использует комбинацию стабилизатора напряжения с низким падением напряжения (LDO), микроконтроллера для генерации сигналов с широтно-импульсной модуляцией (PWM) для трехфазного бесщеточного двигателя BLDC. Основная часть — драйвер двигателя — это DRV11873, один трехфазный бессенсорный драйвер BLDC от Texas Instruments. Вот типичная схема включения DRV11873.

16-контактный микроконтроллер (U1) настроен для подачи сигнала ШИМ (чуть ниже 25 кГц) на DRV11873 (U2) с потенциометром (W1) для регулировки скорости мотора путем изменения рабочего цикла ШИМ. Выход сигнала ШИМ может быть отведен от точки пайки, как показано на следующем изображении. Встроенная перемычка P1 соединена с выводом FR DRV11873, так что по умолчанию вывод остается в низком состоянии для вращения вперед (при переставлении вывод поднимается по потенциалу, и двигатель вращается в обратном направлении).

Следующая перемычка P4, подключенная к контакту COM DRV11873, предназначена для выбора 3-проводного / 4-проводного привода. На плате припаяны три дополнительных резистора (R4-R5-R6) для создания виртуального центрального отвода / нейтральной точки (для получения последовательности коммутации) для реализации 3-проводного привода двигателя BLDC.

Если выбирать вариант «сделай сам», стоит отметить, что оба чипа TI (DRV10866 и DRV11873) не сложно собирать. Для упрощения в качестве генератора ШИМ было бы лучше взять таймер 555 как широтно-импульсный модулятор, способный выдавать выходной сигнал примерно 25 кГц с рабочим циклом, который может изменяться от 5% до 95%.

И вот еще одна плата, похожая на описанную, но с небольшими изменениями в компоновке деталей. Микросхема драйвера двигателя — DRV11873, микроконтроллер — STC15W404A, регулятор напряжения — HT7550-1.

В общем найти подходящий драйвер для двигателя жесткого диска или оптического привода вполне возможно, в продаже есть десятки вариантов модулей, просто нужно выбрать правильный.

Контроллер для bldc мотора своими руками

Собираю контроллер для бесколлекторного 3-фазного двигателя постоянного тока. В протеусе всё работает и двигатель медленно набирает обороты. Собрал всё на плате, подключил двигатель от HDD, он дергается в разные стороны. Раскручиваю его вручную, он останавливается и продолжает дергаться

#define BLDC_DDR DDRD
#define BLDC_PORT PORTD

#define UH PORTD.0
#define UL PORTC.1
#define VH PORTC.2
#define VL PORTC.3
#define WH PORTC.4
#define WL PORTC.5

unsigned char a=0;
unsigned char b=0;
void main()
Читайте также: Kia sportage 2021 мотор

Поставщик валерьянки для Кота

_________________
Что нас не убило сделало нас осторожней
Не доверяйте русским лужам — это может быть вход в метро.

Мудрый кот
Поставщик валерьянки для Кота

_________________
Что нас не убило сделало нас осторожней
Не доверяйте русским лужам — это может быть вход в метро.

Открыл глаза
Мудрый кот
Открыл глаза
Вложения:
Proteus.rar [599.96 KiB]
Скачиваний: 447
Поставщик валерьянки для Кота

а можно вопрос?
ЗАЧЕМ.
строить свой контроллер убивая пачки тарнзюков и моторов когда самый простой контроллер авиамодельный на 30 ампер чтоит 50 грн. ато и 30 грн. при этом 200% работает с любыми BLDC моторами.

а управлять ним очень просто!
при подаче силового питания на контроллер ему на управление нужно давать импульс. длиной 1000 us 20-50 раз в секунду.
потом плаавно нужно наращивать длину импульса при этом будет увеличиваться ШИМ заполнение. максимум будет 2000 микросекунд(2 миллисекунды). вот и всё
серво тестер не крутит моторчик на угол. он всего лишь выдаёт сигнал 1-2 миллисекунды в зависимости от положения крутилки!
если к нему сервопривод подключить — то да. тот будет отклонять вал соответственно положению крутилки. а если к нему контроллер bldc подключить — будет вам счастье. при этом там и контроль перегрева есть . и слежение за напругой АКБ. и в некоторых — логгирование тока напруги оборотов и т.д. и т.п. в общем. я забросил эту идею гиблую

_________________
Что нас не убило сделало нас осторожней
Не доверяйте русским лужам — это может быть вход в метро.

Читайте так же:
Регулировка клапанов 21213 сделай сам
Открыл глаза
Поставщик валерьянки для Кота

_________________
Что нас не убило сделало нас осторожней
Не доверяйте русским лужам — это может быть вход в метро.

Страница 1 из 2[ Сообщений: 26 ]На страницу 1 , 2 След.
Кто сейчас на форуме

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 13

Регулятор оборотов коллекторного двигателя своими руками

Сфера применения коллекторного двигателя

В настоящее время коллекторные двигатели получили широкое применение в быту и на производстве. Такие электромеханические устройства могут быть как постоянного, так и переменного тока. В зависимости от их предназначения возникает необходимость в изменении скорости вращения оборотов электродвигателя. С такой задачей может справиться тиристорный регулятор напряжения или симисторный регулятор мощности для электродвигателя.

Коллекторные электродвигатели

Коллекторный двигатель (КД) представляет собой электрическую машину, которая преобразовывает электрическую энергию в механическую и обратно. Классифицируются КД по роду питающего тока, их разделяют на следующие группы:

  • Питание постоянным током. Имеют простую конструкцию, высокий пусковой момент и управляются плавной регулировкой частоты вращения.
  • Универсальные КД можно питать от постоянного и переменного напряжения. Основные достоинства: простота управления, недорогая стоимость и компактность.

КД постоянного тока в зависимости от типа индуктора могут быть на постоянных магнитах или дополнительных катушках возбуждения. Постоянные магниты создают необходимый магнитный поток, способствующий образованию вращающего момента. Двигатели, где применяются катушки возбуждения, различаются по типу обмоток.

Двигатели универсальные состоят из следующих элементов:

    Коллектора.
  1. Щеткодержателей для фиксации щёток.
  2. Щёток (графитовых или медно-графитовых), служащих для электрического контакта между статорными обмотками и обмотками якоря.
  3. Статорного сердечника, как правило, состоящего из электротехнической стали.
  4. Обмотки статора.
  5. Вала якоря.

Такого типа КД могут быть с параллельным и последовательным возбуждением.

Универсальные двигатели могут работать также и от переменного напряжения, когда при смене полярности в обмотках возбуждения возникает наводящий ток необходимого направления для реверсирования вращения якоря (аверс/реверс). Для регулировки скорости вращения вала электродвигателя, используются различные электрические схемы регуляторов оборотов коллекторных двигателей.

Регуляторы оборотов для КД

Существует несколько типов управляющих схем для регулировки оборотов коллекторных двигателей. Для маломощных устройств с напряжением питания 12 В (вольт) можно использовать реостат или простейшую схему, собранную на транзисторе, за основу которой можно взять любой компенсационный стабилизатор постоянного тока с регулировкой напряжения.

Для плавной регулировки оборотов якоря более мощного КД необходим тиристорный регулятор напряжения постоянного тока. Для протекания тока через тиристор необходимо на его управляющий электрод подать кратковременный импульс. В зависимости от частоты поданных импульсов создаётся порог открывания тиристора, что изменяет величину напряжения на выходе регулятора оборотов. Частоту импульсов можно изменять, включив в схему регулятора генераторный транзистор, например, КТ117, или собрать схему управления на таймере 555 (КР1006ВИ1 отечественного производства).

Такой регулятор постоянного тока можно использовать только с КД постоянного напряжения. Используя тиристоры в высокоиндуктивной нагрузке, так как они могут не до конца закрыться, чревато для выхода из строя регулятора.

Регулятор оборотов двигателя

Регулировку рекомендуется производить с помощью регулятора оборотов коллекторного двигателя с обратной связью, который задаёт скорость вращения с помощью формирователя опорного напряжения в схеме. В момент нагрузки скорость вращения снижается, а вместе с ней вращающий момент.

За счёт уменьшения противо-ЭДС между управляющим электродом и катодом тиристора возникшей в двигателе пропорционально увеличится напряжение управления на тиристоре. Увеличение величины напряжения, с малым фазовым углом, открывается тиристор и подаёт на двигатель максимальный ток.

Тиристор подбирается таким образом, чтобы пусковой ток КД не превышал его максимально допустимые параметры. Регулировку можно производить только на КД состоящих из щёточного узла.

Тиристорный регулятор по схематическим соображениям не может регулировать обороты асинхронных электродвигателей.

Особенности бесколлекторного двигателя

Регулятор оборотов коллекторного двигателя

С виду бесколлекторный двигатель схож с КД, но по конструктивным особенностям имеется различие из-за отсутствия коллектора и щёток. В бесколлекторном двигателе постоянные магниты расположены вокруг вала, так называемого ротора, а обмотки находятся непосредственно на статоре вокруг ротора и имеют определённое количество пар полюсов, от которых зависит скорость мотора. Некоторые бесколлекторные моторы оснащаются сенсорными датчиками, предназначенными для слежения за положением ротора, и управляются электронными регуляторами скорости, собранными на контроллере.

Основными достоинствами бесколлекторных моторов являются отсутствие искрения щёток, создающих помехи, и отсутствие постоянного трения, повышающего температуру внутри двигателя. Отсутствие изнашивающихся частей — коллектора и щёток — увеличивает срок эксплуатации таких моторов, не считая замены подшипников. К недостаткам можно отнести лишь высокую стоимость изделия.

Особой популярностью пользуются однофазные асинхронные двигатели переменного тока, которые используют в различных станках на производстве, а также в бытовых электроприборах, где необходимо использовать разные скорости вращения. Для этих целей используется симисторный регулятор мощности для электродвигателя.

Регулятор оборотов асинхронного двигателя своими руками можно сделать на ШИМ-контроллере tda1085, который управляет симистором. Контроллер можно использовать для управления стиральной машиной совместно с таходатчиком, который считывает импульсы от тахогенератора. Регулирование оборотов осуществляется без потери мощности и независимо от нагрузки.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector