Nara-auto.ru

Автосервис NARA
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как перемотать вторичную обмотку трансформатора под нужное напряжение и ток, расчет

Как перемотать вторичную обмотку трансформатора под нужное напряжение и ток, расчет.

как изменить выходное напряжение и силу тока на трансформаторе самомуТрансформатор является электрической машиной, которая за счет взаимодействия с электромагнитными полями способна преобразовывать электрическую энергию. Устройство трансформатора очень простое. У самого простого варианта трансформатора имеется электромагнитный сердечник, имеющий несколько основных разновидностей по форме, на который наматываются обмотки провода. Эти обмотки принято разделять на первичную и вторичную. Первичная обмотка трансформатора считается входной, вторичная обмотка, это выходная. Количество первичных и вторичных обмоток на трансформаторе может быть различное, в зависимости от конкретных задач этой электрической машины.

Итак, давайте с вами разберемся с этими самыми трансформаторными обмотками, что они собой представляют, от чего зависят, и на что влияет их длина и и сечение. Для начала должна быть определенность с мощностью трансформатора , который нужно пустить в дело. Именно от мощности зависит, какой размер будет иметь эта электрическая машина. Стоит заметить, что при одной и той же номинальной мощности, но имея различный тип (по форме изготовления) и используемому материалу магнитопровода, будут отличатся общие размеры трансформатора.

как узнать мощность трансформатора по напряжению и токуДопустим Вы решили сделать зарядное устройство для автомобильных аккумуляторов, которое должно иметь максимальный выходной ток порядка 10 ампер, и регулируемое выходное напряжение с максимальным значением в 15 вольт. Воспользовавшись формулой для нахождения электрической мощности (нужно напряжение в вольтах умножить на силу тока в амперах, получим мощность в ваттах) можно подсчитать, что нам нужна рабочая мощность порядка 150 ватт. А поскольку трансформаторы (если брать усредненное значение) имеют коэффициент полезного действия около 90%, то к рабочим 150 ваттам нужно добавить еще 10% потерь. Помимо этого правильно делать некий запас по мощности, чтобы не было ровно впритык. Пусть запас будет в 25%. В итоге для наших нужд понадобится силовой понижающий трансформатор мощностью где-то около 200 ватт.

А как связать мощность трансформатора с его размерами? Для этого есть очень простая формула зависимости:

зависимость мощности трансформатора и его размеров, площади магнитопровода

Теперь когда нам известны мощность и размеры трансформатора можно перейти и к самим обмоткам. Итак, наматывать трансформатор с нуля, и первичную и вторичную обмотку, это достаточно трудоемкое дело. Для новичка такая задача будет весьма сложная, особенно это касается первичной обмотки, которая имеет большое количество витков, и обычно мотается достаточно тонким проводом, что также усложняет дело. Думаю, что гораздо правильнее и быстрее будет подыскать готовый силовой, понижающий трансформатор, который имеет подходящую мощность и имеет уже намотанную первичную обмотку, рассчитанную на напряжение 220 вольт. Вторичную же, если она не подходит, можно достаточно легко домотать или перемотать. Вторичка содержит относительно небольшое количество витков и ее перемотка под силу даже новичку, при достаточном желании.

Некоторые типы трансформаторов имеют простую конструкцию и могут легко разбираться. Что и стоит сделать для последующей намотки вторичной обмотки трансформатора. Другие же типы трансформаторов может быть не так легко разобрать, хотя при осторожном и аккуратном подходе домотать или перемотать вторичку можно даже не разбирая трансформатор.

Теперь, что касается самих трансформаторных обмоток . Определенной мощности трансформатора (при стандартной частоте электросети в 50 гц.) соответствует свое количество витков, наматываемых для получения 1 вольта.

количество витков, наматываемых для получения 1 вольта, формула

Это значение узнается изначально при расчетах. Поскольку мы решили взять готовый трансформатор, который был уже рассчитан в начале своего создания, то нам нужно просто узнать это самое количество витков на один вольт. Если Вы решили полностью размотать вторичную обмотку, то сначала измерьте на ней выходное переменное напряжение, после чего в процессе размотки посчитайте, сколько она содержит витков провода. Ну, а далее подсчитанное количество витков разделите на измеренное напряжение, в итоге получив то самое количество витков на один вольт.

намотка вторичной обмотки на силовом трансформаторе своими рукамиЕсли разматывать вторичку Вы не планируете, а лишь хотите ее домотать, то поверх нее просто намотайте, допустим, 10 витков изолированного провода, подайте на трансформатор входное напряжение, измерьте выходное напряжение на этой обмотке в 10 витков, и по пропорции узнайте искомые витки для получения одного вольта. Если забыли как пользоваться пропорцией, то вот вариант еще проще. Намотали несколько витков, измерили напряжение, если меньше вольта, то намотайте еще несколько, опять измерили, ну и так далее, пока не получите этот самый вольт или не намотав обмотку вообще до нужного выходного напряжения в 15 вольт. Думаю идея ясна. Когда уже известно количество витков на 1 вольт, то нужно это количество перемножить на то напряжение, которое Вы хотите получить на выходе, в нашем случае это 15 вольт. Это будет общее количество витков для вторичной обмотки.

Теперь, что касается диаметра наматываемого провода . Если от количества витков зависит величина напряжения, то от сечения обмоточного провода зависит сила тока, который можно получить на выходной обмотке трансформатора. Зависимость сечения провода обмотки трансформатора и тока приведено в следующей формуле:

как узнать диаметр провода для намотки вторичной обмотки трансформатора

Если Вы решили наматывать вторичную обмотку заново, новым проводом, то по формуле узнайте нужный диаметр провода и наматывайте его. Если же решили домотать провод к той обмотке, что уже имеется, и которой не хватает, чтобы получить нужное напряжение на выходе, то учтите – диаметр должен быть такой же (можно больше, но это уже не целесообразно и не экономно). До намотав провод меньшим диаметром Вы снизите выходную силу тока (ограничив ее).

Вот, в принципе, и все, что касается перемотки вторичной обмотки трансформатора под нужное напряжение и ток. Если у Вас вовсе нет желания заниматься намоткой, перемоткой, то просто, зная нужную мощность, величину выходного (и входного) напряжения, и силу тока купите подходящий силовой трансформатор. Наиболее эффективными трансформаторами (имеющих железный магнитопровод) считаются торы (трансформаторы круглой формы). Их самому трудновато мотать, но если их покупать, то это будет лучшим вариантом. У них максимальный КПД, имеют они для своей мощности минимальные габариты. Так что учтите это.

Трансформатор тока для детектирования включений нагрузки в сети 220В

Сердечник и вторичная обмотка самодельного трансформатора тока

Сердечник и вторичная обмотка самодельного трансформатора тока

Недавно у меня возникла необходимость определять на микроконтроллере моменты включения/выключения погружного насоса с поплавковым выключателем, запитанного от сети 220В, т.е. по сути определять наличие потребляемого тока в цепи питания насоса. Когда речь идет об измерениях в сети 220В, то в первую очередь стоит подумать о том, как обеспечить качественную гальваническую развязку, т.е. отсутствие электрического контакта между высоковольтными и низковольтными цепями.

Читайте так же:
Регулировка зажигания москвич азлк

Пожалуй самым простым и быстрым решением было бы взять готовый модуль на эффекте Холла (например на микросхеме ACS712). Однако мне такой вариант не подошёл по двум причинам. Во-первых, он требует питания 5В, а у меня всё было запитано от 3.3В. Во-вторых, он включается в разрыв измеряемой цепи, а мне было очень важно не нарушить работу насоса даже в случае ошибки проектирования или выхода из строя датчика.

Как ни странно, нагуглить готовое решение без специальных модулей для такой казалось бы простой задачи не удалось, поэтому здесь хочу поделиться опытом расчета и изготовления простейших измерительных трансформаторов тока.

Принцип работы трансформатора тока

Пожалуй каждый, кто когда-нибудь работал с аналоговой электроникой, сталкивался наводками от сети 220В. Казалось бы, если от этих наводок так сложно избавиться, то может быть и определить включение нагрузки должно быть очень легко? Однако всё оказалось не совсем так просто.

Действительно, простейший измерительный трансформатор тока можно сделать из мотка обычного двухжильного силового кабеля — по одной из жил запустить измеряемый ток, а с другой снимать полезный сигнал. Попробуем прикинуть (хотя бы по порядку величины), какое напряжение образуется на концах «сигнальной» жилы, если через «силовую» пропустить ток к целевой нагрузке? Может этого будет уже достаточно для решения поставленной задачи?

Моток кабеля в такой конфигурации по сути представляет собой трансформатор с воздушным сердечником. Ток, проходящий через витки силовой жилы, формирует переменное магнитное поле. Это поле создаёт электродвижущую силу ЭДС индукции в каждом витке сигнальной жилы. Величина ЭДС пропорциональна скорости изменения магнитного потока проходящего через окружённую витком поверхность:

Если предположить, что витки в мотке кабеля уложены достаточно плотно, а ток в измерительной жиле равен нулю, то магнитный поток через все витки будет одинаковым, и его можно будет посчитать как произведение индуктивности одного витка , числа витков и тока в силовой жиле . ЭДС во всех измерительных витках будет одинакова и суммарное напряжение на концах сигнальной жилы будет равно произведению числа витков на ЭДС в одном витке:

В бытовой сети переменного тока , где — частота, равная 50 Гц, а — амплитудное значение силы тока. Значение можно определить исходя из мощности нагрузки и действующего значения напряжения , равного 230 В. В итоге для производной тока по времени получаем такую формулу:

Например, для нагрузки мощностью 1 кВт, подключённой к обычной бытовой сети с напряжением 230 В, вычисленная по этой формуле амплитуда производной тока по времени получится чуть меньше 2000 ампер в секунду.

Индуктивность одного витка посчитаем исходя из радиуса нашего мотка и радиуса проволоки, из которой сделана жила кабеля :

Здесь — магнитная постоянная. Для мотка кабеля диаметром 10 см, имеющего жилы диаметром 2 мм, индуктивность витка получается около 0.25 мкГн. Если такой моток сделать из кабеля длиной 10 метров, то получится около 30 витков. В итоге для нашей нагрузки в 1 кВт напряжение на разомкнутой сигнальной жиле получится таким:

Значение получается вполне детектируемое, но что произойдёт в момент включения или выключения нагрузки, когда ток может изменяться в десятки или даже сотни раз быстрее, чем при нормальной работе? В этом случае вместо 450 мВ на концах сигнальной жилы может быть скачок напряжения в несколько десятков или даже сотню вольт, который вполне может повредить вход микроконтроллера.

Чтобы решить проблему с зависимостью ЭДС индукции от частоты сигнала, в трансформаторах тока используется совсем другой режим работы — вместо того, чтобы разомкнуть вторичную обмотку и измерять на ней напряжение, она замыкается накоротко и измеряется проходящий через неё ток.

Как только в сигнальной жиле появляется ток, он создаёт своё собственное магнитное поле, направленное противоположно исходному. В идеальном случае ток в сигнальной жиле мгновенно вырастет настолько, что полностью компенсирует магнитный поток силовой жилы. Для рассмотренного выше случая с одинаковым числом витков силы тока в двух жилах окажутся равны, а ЭДС индукции в сигнальной жиле будет стремиться к нулю. При разном числе витков отношение токов в силовой и сигнальной обмотках будет определяться отношением числа витков: , а суммарный магнитный поток и ЭДС индукции также будут стремиться к нулю.

Конструкция трансформатора тока

В реальном мире у сигнальной жилы есть ненулевое пассивное сопротивление и для создания в ней тока необходимо ненулевое значение ЭДС индукции, а значит магнитный поток силовой обмотки должен быть скомпенсирован не полностью. Чтобы ток в сигнальной обмотке был максимально близок к идеальному, нужно максимизировать отношение напряжения разомкнутой обмотки к реальному падению напряжения, необходимому для создания этого тока. Этого можно добиться разными способами:

снижением целевого падения напряжения на сигнальной обмотке

увеличением числа витков силовой обмотки

увеличением числа витков сигнальной обмотки

увеличением индуктивности каждого витка

Минимизировать напряжение на сигнальной обмотке можно за счёт более чувствительной схемы измерения тока. В самом простом случае ток преобразуется в напряжение на шунтирующем резисторе и падение напряжения определяется диапазоном детектируемых токов и характеристиками аналогового входа микроконтроллера.

Существенно увеличить число витков в силовой обмотке сложно, т.к. через неё подключается нагрузка, а значит у неё должно быть и сечение достаточно большое, и изоляция надёжная. А вот в сигнальной обмотке число витков можно увеличить весьма значительно, причём поскольку ток в сигнальной обмотке обратно пропорционален числу витков в ней, сечение провода также можно существенно уменьшить. Именно поэтому в токовых трансформаторах в сигнальной обмотке обычно значительно больше витков, чем в силовой.

Индуктивность каждого витка можно очень сильно увеличить с помощью ферромагнитного магнитопровода. Обычная электротехническая сталь увеличивает магнитную индукцию в несколько тысяч раз, а также концентрирует магнитное поле внутри магнитопровода, обеспечивая полноту прохождения магнитного потока через витки сигнальной обмотки. Например один виток на ферритовом кольце R36x23x15 PC40 имеет индуктивность около 3 мкГн, что в 12 раз больше, чем те 0.25 мкГн, которые у нас получились для витка в мотке кабеля намного больших размеров.

Наличие магнитопровода в конструкции трансформатора приводит и к некоторым ограничениям:

Напряжённость поля внутри сердечника ограничена эффектом магнитного насыщения, т.е. чем больше измеряемый ток — тем больше должно быть сечение сердечника, чтобы распределить магнитное поле по большей площади.

Читайте так же:
Смотреть как отрегулировать плуг на мотоблоке

Сердечник должен успевать перемагничиваться вслед за изменением магнитного поля силовой обмотке, т.е. частота изменения измеряемого тока ограничена характеристиками материала сердечника.

При перемагничивании сердечника выделяется тепло, что ограничивает произведение частоты изменения тока на величину магнитного поля.

Все эти ограничения однако больше влияют на конструкцию силовых трансформаторов, а для измерительного трансформатора достаточно легко можно обеспечить очень большой запас по каждому из этих ограничений.

От теории к практике

Токовый трансформатор SCT-013

Токовый трансформатор SCT-013

Трансформаторы тока повсеместно используются для измерений в сети 220В. Можно купить готовый трансформатор и через простенькую аналоговую схему подключить его к микроконтроллеру, но возможность и желание ждать заказа есть не всегда, так что мы будем делать самодельный из подручных материалов — в надежде, что это получится и быстрее, и дешевле, и интереснее. Важно сказать, что у меня не было задачи сильно оптимизировать конструкцию — нужно было сделать быстро, просто и понятно, чтобы работало и не ломалось.

Чтобы получить достаточный запас по ЭДС индукции, но сохранить при этом небольшие габариты, я использовал в качестве магнитопровода ферритовое кольцо R36x23x15 PC40 (такое можно купить в ряде магазинов радиодеталей меньше чем за 100 рублей). Первичную обмотку я сделал обычным силовым проводом, просто пропустив его несколько раз через кольцо. А сигнальную обмотку намотал тонким монтажным проводом с сечением 30AWG — таким просто удобнее сделать нужное число витков. Плотность и аккуратность намотки в данном случае были не важны, т.к. достаточно было всего лишь обнаружить включение нагрузки, а не измерять потребляемый ток.

Чтобы оценить запас по ЭДС индукции, я посчитал ожидаемое напряжение на разомкнутой сигнальной обмотке при работающей нагрузке. Для этого сначала вычислил индуктивность одного витка провода на магнитопроводе:

Здесь — магнитная проницаемость материала (2300 для феррита PC40 ), — внешний радиус ферритового кольца, — внутренний радиус, — высота. Получилось значение около 3 мкГн.

Дальше я взял паспортную мощность погружного насоса, включения которого нужно было детектировать (320 Вт), и посчитал амплитуду напряжения на разомкнутой обмотке в зависимости от числа витков в первичной и вторичной обмотках:

Самодельный трансформатор тока, подключённый в цепь с тестовой нагрузкой

Самодельный трансформатор тока, подключённый в цепь с тестовой нагрузкой

Поиграв с числом витков, я решил сделать 6 витков первичной обмотки и 130 витков вторичной. Так получился запас ЭДС около 1.5 В и амплитуда тока в короткозамкнутой сигнальной обмотке чуть меньше 100 мА, что при использовании резистора на 5 Ом соответствует падению напряжения около 0.5 В. Больше витков силового кабеля было бы сложнее впихнуть в просвет кольца, да и ток в сигнальной обмотке не хотелось делать слишком большим (т.к. она сделана из довольно тонкого провода). При меньшем числе витков первичной обмотки для получения хорошего запаса по ЭДС пришлось бы сильно увеличить число витков во вторичной обмотке — а значит гораздо больше возиться с намоткой и получить для детектирования в несколько раз меньший ток.

Схема подключения к микроконтроллеру

На выходе трансформатора тока, шунтированного резистором, получается переменное напряжение, которое нужно как-то детектировать с помощью микроконтроллера. Сначала я собирался использовать для этого диодный выпрямитель, однако это оказалось не очень удачной идеей. Дело в том, что на открытом диоде присутствует довольно значительный перепад напряжения, особенно если это не диод Шоттки. Кроме того, детектировать переменный сигнал известной частоты проще в плане соотношения сигнал/шум.

В итоге я решил просто подать напряжение на шунтирующем резисторе (собранном из двух параллельно включённых резисторов R3 и R4 номиналом по 10 Ом) через токоограничивающий резистор R5 на АЦП-вход микроконтроллера A0 . А чтобы выставить уровень напряжения при отсутствии тока в обмотке, сделал простой резистивный делитель R1/R2 со стабилизирующим конденсатором C1 .

Схема подключения трансформатора тока к микроконтроллеру

Схема подключения трансформатора тока к микроконтроллеру

Таким образом, при выключенной нагрузке на входе микроконтроллера будет напряжение, равное половине напряжения питания. А при включённой — колебания частотой 50 Гц вокруг половины напряжения питания с амплитудой, пропорциональной мощности нагрузки.

Резистор R5 не будет влиять на измерения, т.к. при нормальной работе ток через него пренебрежимо мал. Но если по каким-то причинам на выходе трансформатора возникнет скачок напряжения, превышающий половину напряжения питания, в микроконтроллере откроется защитный диод D1 или D2 , соединяющий вход с одной из линий питания. В этом случае через резистор R5 потечёт ток, и напряжение будет падать на этом резисторе, а не на диоде. Таким образом, резистор R5 защищает вход микроконтроллера от скачков напряжения.

Код для микроконтроллера

Поскольку в моём случае достаточно было детектировать сам факт включения нагрузки, код получился очень простым:

В течение одного периода колебаний измеряется максимальное и минимальное значение на АЦП и величина тока определяется по разности между ними. При включённном насосе функция возвращает значение более 200 отсчётов, а при выключенном — меньше 10.

График значений функции measureCurrent() в зависимости от времени

График значений функции measureCurrent() в зависимости от времени

Заключение

В итоге получилась довольно простая, надёжная и дешёвая система детектирования включений погружного насоса. Она непрерывно работает уже 7 месяцев и пока не потребовала каких-либо вмешательств.

Сделать свой собственный трансформатор тока оказалось совсем несложно и достаточно интересно. Я постарался максимально подробно изложить здесь полученный при этом опыт. Надеюсь, эта статья позволит кому-нибудь быстрее разобраться в принципах работы трансформатора тока и реализовать свои собственные проекты с использованием этого элемента.

UPD: В комментариях подсказали очень дешёвый вариант готового трансформатора тока — ZMCT103C, судя по характеристикам его вполне можно было бы использовать для решения моей задачи.

9. С какой целью параметры вторичной обмотки трансформатора приводят к первичной? Изобразить схему замещения трансформатора и пояснить ее.

Для упрощения анализа и расчета режимов работы трансформатора пользуются способом, при котором одна из его обмоток приводится к другой. Смысл приведения состоит в том, чтобы сделать ЭДС первичной и вторичной обмоток одинаковыми, электромагнитную связь между обмотками заменить электрической связью и получить единую электрическую схему замещения трансформатора, построить другую, более простую и наглядную векторную диаграмму. Чаще всего вторичную обмотку приводят к первичной. Для этого условно заменяют реальную вторичную обмотку некоторой фиктивной обмоткой с числом витков:

т.е. увеличивают число ее витков в k раз. Таким образом, коэффициент приведения вторичной обмотки к первичной равен коэффициенту трансформации. Все параметры приведенной обмотки обозначают со штрихами:

Читайте так же:
Регулировка зажигания на мотоблоке фаворит

и т.д. В приведенной обмотке в соответствии с новым числом витков увеличиваются все ЭДС, напряжения и падения напряжения, т.е.:

Важным условием приведения является то, чтобы мощности и потери энергии во вторичной обмотке не изменялись. Для этого должны выполняться равенства:

из которых получаются соотношения для тока и активного сопротивления приведенной вторичной обмотки:

Аналогично последнему соотношению изменяются индуктивное сопротивление рассеяния приведенной вторичной обмотки и параметры нагрузки:

Для полных сопротивлений справедливы соотношения:

Если таким образом изменить (условно конечно) все электрические величины вторичной обмотки, то энергетические соотношения в реальном и приведенном трансформаторе сохраняются без изменений и поэтому приведение правомерно. При этом необходимо помнить, что приведение — это чисто аналитический прием, позволяющий упростить расчеты и анализ физических процессов в реальном трансформаторе.

2 Схема замещения трансформатора. Для упрощения анализа электромагнитных процессов в трансформаторе вводится схема замещения, в которой магнитная связь заменяется электрической и коэффициент трансформации n

Коэффициент трансформации является и коэффициентом приведения вторичной цепи к первичной. На рисунке показана схема замещения трансформатора:

где введены такие обозначения:

R – учитывает потери в магнитопроводе (на вихревые токи и на гистерезис);

X – учитывает намагниченность материала сердечника и зависит от марки материала (в идеальном трансформаторе Z ® ¥);

R1, R2 – учитывают потери на нагрев обмоток первичной и вторичной цепей;

XS1, XS2 – индуктивности рассеяния основного потока в обмотках первичной и вторичной цепей;

Для получения соотношения между реальными и приведенными параметрами, воспользуемся равенством полных мощностей, активных мощностей и углов потерь: ,,.

1 .

3

Запишем систему уравнений для схемы замещения:

В опыте холостого хода схема замещения трансформатора принимает вид:

Так как параметры продольного плеча значительно меньше, чем параметры поперечного плеча схемы замещения и ток “холостого” хода значительно меньше номинального тока первичной цепи, то в схеме замещения трансформатора на “холостом” ходу пренебрегаем параметрами XS1 и R1.

Опыт “короткого” замыкания проводится при пониженном напряжения питания, так как ток в обмотках трансформатора может превысить номинальные значения при повышении напряжения. Необходимо плавно увеличивать напряжение на выходе ЛАТРа до достижения номинальных токов в цепях. Измеряемыми параметрами являются: номинальные токи в цепях IК1, IK2 , напряжение короткого замыкания первичной цепи (UК1) и потери в обмотках. При измерении коэффициента мощности потери определяются из выражения:

Схема замещения трансформатора в опыте “короткого” замыкания приводится в виде:

Под внешней характеристикой понимается зависимость выходного напряжения от тока нагрузки с учетом его характера (активная -R, активно- емкостная –

RC, активно – индуктивная — RL). Схема замещения трансформатора принимает вид:

По второму закону Кирхгофа запишем уравнение для схемы замещения трансформатора:

U2 = U1 — I Zk = U1 – I (jXk + Rk).

Из векторной диаграммы видно, что при активной и индуктивной нагрузках происходит уменьшение напряжения во вторичной цепи трансформатора с увеличением тока I. Если нагрузка имеет емкостный характер, то напряжение увеличивается. При проектировании трансформатора необходимо учитывать характер нагрузки. Например, индуктивная нагрузка требует увеличивать количество витков во вторичной цепи с учетом понижения напряжения при работе под нагрузкой. Конденсаторы используются для компенсации реактивной составляющей в трансформаторах, они включаются в трехфазных трансформаторах параллельно в каждой фазе или между фазами,

Как проверить обмотки трансформатора

В этом видеоролике канала Паяльник ТВ мы рассмотрим простейшие способы, как проверить обмотки и способ получения двухполярного питания из обычного трансформатора. Самый лучший вариант — это наличие двух одинаковых обмоток. В данном случае у каждой амплитудное напряжение по 12 вольт, а сопротивление их по 100 миллиОм.

Здесь очень важно сделать правильное соединение. Друг с другом обмотки соединяются теми концами, фазы которых противоположны, то есть сдвинуты на 180 градусов. И тогда на двух других концах получается сумма напряжений обеих обмоток. Эти концы подключаются к входам обычного диодного моста, а выходы моста подключаются к 2 сглаживающим конденсаторам, которые соединены так, чтобы один из них через верхние диоды заряжался положительным напряжением с концов обмоток относительно земли, а другой отрицательным через нижние диоды. А земля, которая здесь является средней точкой, подключена к другим контактам. В качестве нагрузки здесь используются два резистора. Отдельно на плюс и на минус питания.

Теперь посмотрим на эту схему в действии.

Особое наблюдение установим за положительным и отрицательным напряжениями на выходе. Без нагрузки показатели очень быстро достигли уровня плюс и минус 12 вольт и отсутствуют пульсации. А после подключения нагрузки появились пульсации и напряжение немного просело.

Давайте теперь нагрузим и минус двухполярного питания и понаблюдаем, как будет влиять на пульсации изменения сопротивления нагрузки. Итак, последнее уменьшено в несколько раз и пульсации от этого существенно выросли. Теперь уменьшим потребляемый ток, вернув прежнее сопротивление, и посмотрим на пульсации на плюсе питания поближе.

Получается амплитуда пульсации примерно 700 милливольт. Этот результат мы запомним для сравнения с другими вариантами. А теперь пришло время применить эту схему к реальному трансформатору.

Проверка обмоток трансформатора

Проверка обмоток трансформатора

Допустим, имеется трансформатор без опознавательных знаков. Нужно проверить его работоспособность, сколько здесь обмоток и на какое напряжение. Самый простой способ это сделать — включить в сеть 220 или 110 вольт в зависимости от входного напряжения, на которое он рассчитан. И измерить его на вторичных обмотках. Так как есть риск закоротить их при измерении, будем использовать то. что попадается нам под руку. В нашем случае это термоусадка. Сначала наденем ее на выводы вторичных обмоток. Поставим режим измерения в данном случае до двухсот вольт. Следующим моментом его надо включить. Но так как это заведомо рабочий трансформатор, включим не через лампочку. Если же это неизвестный трансформаторах и мы не знаем его работоспособность, лучше всего включить через лампочку, то есть в разрыв одного из проводов подключаем её.

Теперь давайте измерять попарно. Чаще всего в трансформаторах именно попарные обмотки, которые выведены рядом.

Здесь примерно 9 вольт. Мы определили одну из обмоток. Это первые два — 9 вольт. Измеряем вторые два. Тоже 9 вольт.

То есть мы нашли вторую обмотку. Третья и четвертая пары тоже по 9 вольт. Остается проверить, что они не соединены.

Далее на видео с 6 минуты.

Как проверить трансформатор мультиметром? Инструкция

Часто нужно ознакомиться заранее с вопросом о том, как проверить трансформатор. Ведь при выходе его из строя или нестабильной работе будет сложно искать причину отказа оборудования. Это простое электротехническое устройство можно продиагностировать обычным мультиметром. Рассмотрим, как это сделать.

Читайте так же:
Как отрегулировать автоматический выключатель

Что собой представляет оборудование?

Как проверить обмотки трансформатора

Как проверить трансформатор, если не знаем его конструкцию? Рассмотрим принцип действия и разновидности простого оборудования. На магнитный сердечник наносят витки медной проволоки определенного сечения так, чтобы оставались выводы для подающей обмотки и вторичной.

Передача энергии во вторичную обмотку производится бесконтактным способом. Тут уже становится почти ясно, как проверить трансформатор. Аналогично прозванивается обычная индуктивность омметром. Витки образуют сопротивление, которое можно измерить. Однако такой способ применим, когда известна заданная величина. Ведь сопротивление может измениться в большую или меньшую сторону в результате нагрева. Это называется межвитковое замыкание.

Такое устройство уже не будет выдавать эталонное напряжение и ток. Омметр покажет только обрыв в цепи или полное короткое замыкание. Для дополнительной диагностики используют проверку замыкания на корпус тем же омметром. Как проверить трансформатор, не зная выводов обмоток?

Это определяется по толщине выходящих проводов. Если трансформатор понижающий, то выводные проводники будут толще подводящих. И соответственно, наоборот: у повышающего вводные провода толще. Если две обмотки выходные, то толщина может быть одинаковой, про это следует помнить. Самый верный способ посмотреть маркировку и найти технические характеристики оборудования.

Трансформаторы делятся на следующие группы:

  • Понижающие и повышающие.
  • Силовые чаще служат для уменьшения подводящего напряжения.
  • Трансформаторы тока для подачи потребителю постоянной величины тока и ее удержания в заданном диапазоне.
  • Одно- и многофазные.
  • Сварочного назначения.
  • Импульсные.

В зависимости от назначения оборудования изменяется и принцип подхода к вопросу о том, как проверить обмотки трансформатора. Мультиметром можно прозвонить лишь малогабаритные устройства. Силовые машины уже требуют иного подхода к диагностике неисправностей.

Метод прозвонки

Как проверить обмотки трансформатора

Метод диагностики омметром поможет с вопросом о том, как проверить трансформатор питания. Прозванивать начинают сопротивление между выводами одной обмотки. Так устанавливают целостность проводника. Перед этим проводят осмотр корпуса на отсутствие нагаров, наплывов в результате нагрева оборудования.

Далее замеряют текущие значения в Омах и сравнивают их с паспортными. Если таковых не имеется, то потребуется дополнительная диагностика под напряжением. Прозвонить рекомендуется каждый вывод относительно металлического корпуса устройства, куда подключаются заземление.

Перед проведением замеров следует отключить все концы трансформатора. Отсоединить от цепи их рекомендуется и в целях собственной безопасности. Также проверяют наличие электронной схемы, которая часто присутствует в современных моделях питания. Её также следует выпаять перед проверкой.

Бесконечное сопротивление говорит о целой изоляции. Значения в несколько килоом уже вызывают подозрения о пробое на корпус. Также это может быть за счет скопившейся грязи, пыли или влаги в воздушных зазорах устройства.

Под напряжением

Как проверить обмотки трансформатора

Испытания с поданным питанием проводятся, когда стоит вопрос о том, как проверить трансформатор на межвитковое замыкание. Если мы знаем величину питающего напряжения устройства, для которого предназначен трансформатор, то замеряют вольтметром значение холостого хода. То есть провода выводные находятся в воздухе.

Если значение напряжения отличается от номинального, то делают выводы о межвитковом замыкании в обмотках. Если при работе устройства слышны треск, искрение, то такой трансформатор лучше сразу выключить. Он неисправен. Существуют допустимые отклонения при измерениях:

  • Для напряжения значения могут отличаться на 20%.
  • Для сопротивления нормой является разброс значений в 50% от паспортных.

Замер амперметром

Как проверить обмотки трансформатора

Разберемся, как проверить трансформатор тока. Его включают в цепь: штатную либо собственно изготовленную. Важно, чтобы значение тока было не меньше номинального. Замеры амперметром проводят в первичной цепи и во вторичной.

Ток в первичной цепи сравнивают со вторичными показаниями. Точнее, делят первые значения на замеренные во вторичной обмотке. Коэффициент трансформации следует взять из справочника и сравнить с полученными расчетами. Результаты должны быть одинаковыми.

Трансформатор тока нельзя замерять на холостом ходу. На вторичной обмотке в таком случае может образоваться слишком высокое напряжение, способное повредить изоляцию. Также следует соблюдать полярность подключения, что повлияет на работу всей подключенной схемы.

Типичные неисправности

Как проверить обмотки трансформатора

Перед тем как проверить трансформатор микроволновки, приведем частые разновидности поломок, устраняемых без мультиметра. Часто устройства питания выходят из строя вследствие короткого замыкания. Оно устанавливается путем осмотра монтажных плат, разъемов, соединений. Реже происходит механическое повреждение корпуса трансформатора и его сердечника.

Механический износ соединений выводов трансформатора происходит на движущихся машинах. Большие питающие обмотки требуют постоянного охлаждения. При его отсутствии возможен перегрев и оплавление изоляции.

Как проверить обмотки трансформатора

Разберемся, как проверить импульсный трансформатор. Омметром можно будет установить только целостность обмоток. Работоспособность устройства устанавливается при подключении в схему, где участвует конденсатор, нагрузка и звуковой генератор.

На первичную обмотку пускают импульсный сигнал в диапазоне от 20 до 100 кГц. На вторичной же обмотке делают замеры величины осциллографом. Устанавливают присутствие искажений импульса. Если они отсутствуют, делают выводы об исправном устройстве.

Искажения осциллограммы говорят о подпорченных обмотках. Ремонтировать такие устройства не рекомендуется самостоятельно. Их настраивают в лабораторных условиях. Существуют и другие схемы проверки импульсных трансформаторов, где исследуют присутствие резонанса на обмотках. Его отсутствие свидетельствует о неисправном устройстве.

Также можно сравнивать форму импульсов, поданных на первичную обмотку и вышедших со вторичной. Отклонение по форме также говорит о неисправности трансформатора.

Несколько обмоток

Как проверить обмотки трансформатора

Для замеров сопротивления освобождают концы от электрических соединений. Выбирают любой вывод и замеряют все сопротивления относительно остальных. Рекомендуется записывать значения и маркировать проверенные концы.

Так мы сможем определить тип соединения обмоток: со средними выводами, без них, с общей точкой подключения. Чаще встречаются с отдельным подключением обмоток. Замер получится сделать только с одним из всех проводов.

Если имеется общая точка, то сопротивление замерим между всеми имеющимися проводниками. Две обмотки со средним выводом будут иметь значения только между тремя проводами. Несколько выводов встречается в трансформаторах, рассчитанных на работу в нескольких сетях номиналом 110 или 220 Вольт.

Нюансы диагностики

Гул при работе трансформатора является нормальным, если это специфичные устройства. Только искрение и треск свидетельствуют о неисправности. Часто и нагрев обмоток — это нормальная работа трансформатора. Чаще это наблюдается у понижающих устройств.

Может создаваться резонанс, когда вибрирует корпус трансформатора. Тогда следует его просто закрепить изоляционным материалом. Работа обмоток значительно меняется при неплотно затянутых или загрязненных контактах. Большинство проблем решается зачисткой металла до блеска и новой обтяжкой выводов.

Читайте так же:
Что такое автоматическая регулировка уровня звука

При замерах значений напряжения и тока следует учитывать температуру окружающей среды, величину и характер нагрузки. Контроль подводящего напряжения также необходим. Проверка подключения частоты обязательна. Азиатская и американская техника рассчитана на 60 Гц, что приводит к заниженным выходным значениям.

Неумелое подключение трансформатора может привести к неисправности устройства. Ни в коем случае не подсоединяют к обмоткам постоянное напряжение. Витки быстро оплавятся в противном случае. Аккуратность в замерах и грамотное подключение помогут не только найти причину поломки, но и, возможно, устранить ее безболезненным способом.

Что такое трансформатор и как его проверить

Сварочный аппарат, микроволновка, компьютер, блок питания, телевизор — такие разные электроприборы но в каждом из них есть трансформатор. Как прозвонить обмотки и замерить напряжение выдаваемое трансформатором, как посчитать допустимую мощность и что такое ток холостого хода — вопросы на которые Вы получите исчерпывающие ответы и несколько практических советов по работе с трансформаторами. В конце расскажу о трансформаторе тока и где он используется.

  • Для чего нужен трансформатор?
    • Как рассчитать обмотки трансформатора
    • Как прозвонить обмотки трансформатора?

    Для чего нужен трансформатор?

    Основное свойство трансформатора преобразование напряжения или тока до требуемого значения и гальванической развязки — это очень полезное свойство трансформаторов о котором расскажем ниже.

    И так, например, в домашней электро-розетке напряжение 220 вольт 50 герц (AC — так на схемах и блоках питания обозначают переменное напряжение — AC 220v 50hz), т.е., переменное напряжение, а для питания ноутбука нам нужно 18 вольт постоянного тока (DC — так обозначается постоянное напряжение DC 18v). С помощью трансформатора мы можем преобразовать напряжение до требуемой величины, а затем выпрямить его. После чего, это напряжение будет пригодно для питания Вашего ноутбука. Не совсем понятно? Не хватает термина — Коэффициент трансформации.

    Как рассчитать обмотки трансформатора

    В нашем примере, 220/18=12,22 это соотношение количества витков обмоток и это значение коэффициента трансформации.
    Что такое трансформатор и как его проверить 🔴 Что такое трансформатор и как его проверитьЗная, коэффициент трансформации , этим числом можно посчитать количество витков трансформатора. Если поменять обмотки, т.е., подать напряжение 220 вольт на вторичную обмотку, с первичной мы получим 2688 вольт — но делать так я не рекомендую, транс сгорит сразу или выбьет автомат в щитке.
    Допустим, вы знаете что в первичной обмотке транса 2200 витков, а сколько витков должно быть во вторичной обмотке для получения 18 вольт? Все просто, 18 (напряжение в вольтах)*12,22 (коэффициент трансформации) = 220 витков.

    Как устроен трансформатор?

    простой трансформатор   Что такое трансформатор и как его проверить

    Простейший трансформатор, это две независимых обмотки связанных магнитопроводом. В первой обмотке создается магнитное поле, затем через магнитопровод передается на вторую обмотку, в которой в зависимости от коэффициента трансформации повышается или понижается. На самом деле, все значительно сложнее, много факторов влияющих на выходное напряжение, но для данного контекста этого достаточно.

    Какие бывают трансформаторы?

    1. Повышающий трансформатор (высоковольтный) — повышает напряжение до требуемой величины, но снижает ток пропорционально. При повышении напряжения более чем 20-30 раз большое значение имеет КПД трансформатора, как правило для частоты 50 герц это предел, дальше начинаются значительные потери. Для повышения КПД трансформаторов увеличивают частоту, так высоковольтный трансформатор в электро-шокере повышает напряжение до 20-100 тысяч вольт и работает на частотах от 800гц до 2,4кгц. При этом, ток пропорционально снижается.
    2. Понижающий трансформатор (силовой) — понижает напряжение до требуемой величины, пропорционально увеличивает допустимый ток. Например сварочный аппарат, снижает напряжение до 50 вольт (в 4,4 раза), увеличивает ток в 4,4 раза. Но для соблюдения этого условия сечение провода во вторичной обмотке тоже, должно быть больше в 4,4 раза.

    Автотрансформатор (ЛАТР) — понижающий трансформатор с одной обмоткой, с которой с помощью ручки реостата, получают напряжение от 1 до 180 вольт. Такие трансы используются в лабораторных условиях для проверки различных устройств. В быту используется в некоторых регуляторах напряжения.

    Масляный трансформатор — трансформатор монстр! с обмотками трубами, заполненными минеральным маслом. Такие устанавливают в силовых подстанциях для снижения напряжения с 10000 вольт до 220. Если передавать на большое расстояние напряжение в 220 вольт по обычным проводам, потери будут значительны. Как известно, чем выше напряжение, тем меньше влияет сопротивление провода. С ТЭЦ и ГРЭС по Линиям Электро Передач передается вообще 100000 вольт!

    Импульсный трансформатор — без него не обходится не один современный электроприбор, будь то ТВ, ноутбук, компьютер или зарядник для телефона. Как правило работает на частотах свыше 800гц в паре с контроллером ШИМ который увеличивает частоту импульсов в возрастанием нагрузки. Гениальное изобретение, позволяющее получать большие токи при скромных размерах. Сравните размеры традиционного сварочного аппарата и сварочного инвертора работающего на этом принципе.

    Как отличить первичную обмотку от вторичной в трансформаторе

    Существует три основных признака первичной обмотки трансформатора:

    1) В понижающем трансформаторе сопротивление первичной обмотки значительно выше, чем вторичной.

    2) Как правило, первичная обмотка наматывается более тонким проводом.

    3) Первичная обмотка транса наматывается ближе к магнитопроводу для увеличения КПД трансформатора.

    4) Если трансформатор запаян в схему, можно посмотреть по выводам. Во вторичной обмотке, как правило включается диодный мостик и за ним электролитический конденсатор большой емкости (от 1000мкф). В первичной, обычно ставят предохранитель.
    Подробно, как определить где первичная обмотка смотрите видео ниже.

    Как прозвонить обмотки трансформатора?

    Если в вашем распоряжении цешка или мультиметр, выяснить где и какая обмотка не так сложно. Включаем тестер в режим измерения сопротивления (100ом) и прозваниваем выводы трансформатора. Допустим, тестер показал на одной из обмоток 89ом, на другой всего 7ом — соответственно это вторичка.

    совет электрика рекомендуетВ нашей группе ВКонтакте мы собрали видео инструкции от лучших электриков, смотрите и присоединяйтесь к нам!

    Как узнать ток холостого хода у трансформатора?

    Ток холостого хода — это ток, который транс потребляет без нагрузки, чем он ниже, тем качественнее рассчитан и изготовлен трансформатор. Низкое качество магнитопровода, межвитковое замыкание, неправильное подключение увеличивают ток холостого хода. Этот ток преобразуется в тепло и если он велик (более 20-100ма) транс может сгореть. Переключите тестер в режим измерения тока и включите последовательно с первичной обмоткой трансформатора. по результату измерения, решайте сами не опасно ли использовать такой трансформатор.

    голоса
    Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector