Nara-auto.ru

Автосервис NARA
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Участие различных отделов цнс в регуляции локомоций

Участие различных отделов цнс в регуляции локомоций

Роль спинного мозга в регуляции двигательных актов. Все нейроны спинного мозга функционально подразделяются на мотонейроны, интернейроны, нейроны симпатической и парасимпатической системы. Мотонейроны спинного мозга с учетом их функций подразделяют на альфа — и гамма — мотонейрроны.

Альфа — мотонейроны имеют прямые связи от чувствительных путей, идущих от экстрафузальных волокон мышц.

Гамма — мотонейроны иннервируют интрафузальные мышечные волокна мышечного веретена.

Интернейроны – промежуточные нейроны, организуют связи между структурами спинного мозга, в обеспечении влияния восходящих и нисходящих путей на клетки отдельных сегментов спинного мозга.

Спинной мозг выполняет две важнейшие функции: рефлекторную и проводниковую.
Рефлекторная функция спинного мозга заключается в том, что он осуществляет регуляцию многих двигательных актов. С клинической точки зрения особую роль среди них занимают сухожильные рефлексы. Это многочисленные рефлексы, которые врач определяет, вызывая с помощью короткого удара по сухожилию. Это важно, особенно в неврологической практике, так как каждый рефлекс этой группы имеет строго определенный уровень замыкания в спинном мозгу. Особенно выражены эти рефлексы в мышцах разгибателях и сгибателях рук и ног (коленный, ахиллов рефлекс и другие). Например, легкий удар по сухожилию надколенной чашечки вызывает сокращение мышц бедра и разгибание голени. Дуга этого рефлекса следующая: рецепторы сухожилия четырехглавой мышцы бедра – спинальный ганглий – задние корешки – задние рога III поясничного сегмента – мотонейроны передних рогов того же сегмента — экстрафузальные волокна четырехглавой мышцы бедра.
Сгибательные рефлексы — направлены на избежание различных повреждающих воздействий. Они возникают при раздражении рецепторов кожи, мышц и внутренних органов. Например, раздражение болевых рецепторов (укол, щипок) приводит к сокращению мышц- сгибателей и отдергиванию руки (обеспечивают функцию защиты).
Ритмические рефлексы – чесательный (ритмические сокращения и расслабления, сгибания и разгибания).

Позные рефлексы – это большая группа актов, направленных на поддержание определенной позы (стояние, лежание и др.).

В случаях травмы спинного мозга и его полного пересечения развивается состояние, получившее название спинальный шок. Причина такого состояния связана с выпадением влияний, поступающих из вышележащих отделов нервной системы в спинной мозг. Это сопровождается глубоким параличом мускулатуры тела, иннервируемой сегментами спинного мозга, находящимися ниже места повреждения, позже они частично восстанавливаются. Восстановление произвольных движений зависит от степени поражения пирамидных путей.

Роль ствола мозга в регуляции двигательных функций. В ствол мозга включают продолговатый мозг, варолиев мост, средний мозг, промежуточный мозг, ретикулярную формацию. Так как Вы изучали подробно все эти отделы мозга на анатомии, то я ограничусь лишь кратким изложением их основных функций, имеющих отношение к движению.

Продолговатый мозг имеет отношение к реализации вегетативных и соматических рефлексов, рефлексов вкусовых, слуховых, вестибулярных. На данной лекции мы рассмотрим его роль только в осуществлении соматических и вестибулярных рефлексов. Остальные же его функции мы рассмотрим в соответствующих разделах физиологии.

Особенностью рефлексов продолговатого мозга является то, что они более продолжительны (в сравнении с рефлексами спинного мозга), в них более выражено последействие и межсегментарность. С точки зрения регуляции двигательных актов, то, пожалуй, наибольшее значение продолговатый мозг имеет отношение к организации рефлексов поддержания позы. Эти рефлексы берут свое начало от рецепторов вестибулярного аппарата (преддверия улитки и полукружных каналов), далее переключаются в верхнее вестибулярное ядро, а потом, переработанная информация посылается к латеральному и медиальному вестибулярным ядрам продолговатого мозга. В этих ядрах определяется, какие мышечные системы, какие сегменты спинного мозга должны принять участие в изменении позы. Поэтому от нейронов медиального и латерального ядра по вестибулоспинальному пути сигнал поступает к передним рогам соответствующих сегментов спинного мозга, иннервирующих мышцы. Все рефлексы этой группы подразделяют на статические,они обеспечивают сохранение равновесия и положение тела в пространстве при спокойном стоянии, лежании, сидении в различных позах. Берут свое начало от рецепторов преддверья, в частности, от оттолитового аппарата. Статокинетические – обеспечивают перераспределение мышечного тонуса для организации соответствующей позы при движении, прямолинейном или вращательном (они берут свое начало от рецепторов полукружных каналов).

Варолиев мост и средний мозг. Мост мозга – одна из структур ствола мозга, функционально тесно связанная со средним мозгом. Через мост проходят все восходящие и нисходящие пути, связывающие передний мозг со спинным мозгом, с мозжечком и другими структурами мозга.

Средний мозг представлен четверохолмием, ядрами – красными, черной субстанцией, глазодвигательных и блоковидных нервов.

Красное ядро – регулирует тонус мускулатуры, посылая корригирующие импульсы к мотонейронам спинного мозга по руброспинальному пути. При нарушении его функции, а также связи со спинным мозгом, развивается реакция, описанная как децеребрационная ригидность. Она характеризуется тем, что напрягаются мышцы разгибатели конечностей, шеи и спины.

Черная субстанция – расположена в ножках мозга, регулирует акт жевания, глотания, обеспечивает координацию точных движений (например, при письме).

Ядро блокового и глазодвигательного нервов – обеспечивает повороты глазного яблока во всех направлениях.

Бугры четверохолмия – верхние являются первичными зрительными, а нижние – первичными слуховыми подкорковыми центрами. Основная их функция – организация реакции настораживания на внезапные не распознанные зрительные и слуховые реакции.

Промежуточный мозг состоит из таламуса, гипоталамуса, эпиталамуса. К реакциям движения имеет отношение только таламус. Остальные же отделы промежуточного мозга преимущественно вегетативной ориентации и отвечают за некоторые поведенческие реакции.

Таламус – это структура, в которой происходит обработка и интеграция практически всех сигналов, идущих в кору головного мозга от нейронов спинного мозга, среднего мозга, мозжечка, базальных ганглиев. В нем обнаружено более 120 ядер, образующих комплексы, которые делятся на: передние, задние, медиальные и латеральные. Сложное строение таламуса, наличие здесь взаимосвязанных специфических, неспецифических и ассоциативных ядер, позволяет ему организовывать такие двигательные акты, как сосание, жевание, глотание, смех. Двигательные акты интегрируются в таламусе с вегетативными рефлексами, обеспечивающими эти движения.

Ретикулярная формация мозга – представлена сетью нейронов с многочисленными связями практически со всеми отделами мозга. Ее участие в движении заключается в том, что от нее к мотонейронам спинного мозга и черепно-мозговых ядер поступают сигналы, организующие положение головы, туловища, позы. Ретикулярные пути, облегчающие активность моторных систем спинного мозга, берут свое начало от всех отделов ретикулярной формации. Пути, идущие от моста, тормозят активность мотонейронов спинного мозга, иннервирующие сгибатели и активируют мотонейроны разгибателей. Пути, идущие от продолговатого мозга, вызывают противоположный эффект. Раздражение ретикулярной формации приводит к тремору, повышению тонуса мышц, а может вызывать и торможение спинальных рефлексов. Это происходит в тех случаях, когда возникает необходимость регуляции позы или смены одного движения другим.

Мозжечок и его роль в регуляции движений. Мозжечок посылает эфферентные сигналы в спинной мозг и регулирует силу мышечных сокращений, обеспечивает способности длительного тонического сокращения мышцы, сохранять оптимальный тонус мышц в покое или при движениях, соразмерять произвольные движения с целью быстрого перехода от сгибания к разгибанию и наоборот. Он обеспечивает синергию сокращений разных мышц при сложных движениях, например, при ходьбе.

В тех случаях, когда мозжечок не выполняет своей регуляторной функции, у человека наблюдаются расстройства двигательных функций. Это выражается следующей симптоматикой. Астения – снижение силы мышечного сокращения, быстрая утомляемость мышц; астазия – утрата способности к длительному сокращению мышц, что затрудняет стояние, сидение; атаксия – нарушение координации движений; асинергия – нарушение содружественных движений;дистония – непроизвольное повышение или понижение тонуса мышц; тремор –дрожание пальцев руки, кисти, головы в покое, этот тремор усиливается при движении; дисметрия – расстройство равномерности движений, выражающееся либо в излишнем, либо недостаточном движении, больной пытается взять предмет со стола и проносит руку за него или недоносит ее до предмета; дизартрия –расстройство речевой моторики.

При повреждениях мозжечка ярче всего проявляется невозможность выполнения нужного порядка, последовательности движений. Проявлениями атаксии являютсяадиадохокинез, асинергия, пъяная шаткая походка. При адиадохокинезе человек не способен быстро вращать ладони вниз-вверх. При асинергии мышц он не способен сесть ( из положения лежа) без помощи рук. Пъяная походка характеризуется тем, что человек ходит, широко расставив ноги, шатаясь из стороны в сторону от линии ходьбы. Когда нарушается функция мозжечка, движения становятся неточными, негармоничными, разбросанными, часто не достигая цели.

Читайте так же:
Регулировка фар вольво v40

При повреждении мозжечка активируются нейроны вестибулярных ядер и ретикулярной формации продолговатого мозга, которые активируют мотонейроны спинного мозга. Одновременно активность пирамидных нейронов снижается, а, следовательно, снижается их тормозное влияние на те же мотонейроны спинного мозга. В итоге, получая возбуждающие сигналы от продолговатого мозга и не получая торможения со стороны коры, мотонейроны активируются и вызывают гипертонус мышц.

Роль базальных ядер в регуляции двигательных функций. Базальные ядра головного мозга включают три парных образования: неостриатум (хвостатое ядро и скорлупа), палеостриатум (бледный шар) и ограду.

Неостриатум – принимает участие в регуляции тонуса мускулатуры. Так, при повреждении этих ядер наблюдаются гиперкинезы типа: непроизвольных мимических реакций, тремора, атетоза, торсионного спазма, хореи (подергивание конечностей, туловища, как при некоординированном танце), двигательной гиперактивности в форме бесцельного перемещения с места на место. При повреждениях хвостатого ядра имеют место расстройства движения: двустороннее повреждение полосатого тела ведет к безудержному стремлению движения вперед, одностороннее повреждение – приводит к манежным движениям.

Палеостриатум (бледный шар) – провоцирует ориентировочную реакцию и движения конечностей. Его разрушение приводит к гиподинамии, вызывает у людей маскообразность лица, тремор головы, конечностей, причем этот тремор исчезает в покое, во сне и усиливается при движениях. Наблюдается миоклония – быстрые подергивания отдельных мышечных групп или отдельных мышц рук, спины, лица. У человека с дисфункцией бледного шара начало движений становится трудным, исчезают вспомогательные и реактивные движения при вставании, нарушаются содружественные движения рук при ходьбе.

Ограда – связана с корой и большинством подкорковым образований. При ее повреждении больные не могут говорить. При ее стимуляции возникают ориентировочные реакции – поворот головы, жевательные, глотательные, иногда рвотные движения.

Нейронная организация локомоции. Мы видим, что структуры, принимающие участие в организации движений, расположены во всех отделах мозга. Они взаимосвязаны морфологически и функционально. Регуляция моторных функций по уровням их организации может быть представлена следующим образом.

Спинальный уровень – на этом уровне осуществляется наиболее простая форма автоматического регулирования состояния мышц

Уровень ствола мозга – регулилирует движения по нисходящим путям, идущим к спинному мозгу.

Программируемй уровень – высший, корковый.

Все три уровня регуляции движений могут реализовывать эти функции как самостоятельно, так и с учетом других уровней. Причем, каждый из этих уровней может регулировать работу мышц через мотонейроны спинного мозга как последовательно, так и параллельно. Следовательно, любое сокращение мышцы может быть вызвано спинным мозгом, структурами ствола и коры. Совокупное участие разных уровней позволяет повысить надежность регуляции движения, их точность, локальность, сложность.

Каждый уровень регуляции имеет обратные связи об исполнении движения от мышечной системы, каждый уровень регуляции, посылает команду к мотонейронам спинного мозга, одновременно посылает сигнал о команде к другим выше и нижележащим центрам, Это позволяет программирующему центру своевременно оценивать команды других уровней и в нужный момент производить коррекцию управления движений.

Произвольные движения человека регулируются корой головного мозга. Управление мотонейронами спинного мозга при произвольных движениях осуществляется прецентральной бороздой коры, частично реализуется через клетки Беца и через пирамидный путь. Кроме того, эта реализация осуществляется и через экстрапирамидные пути. Повреждения моторной коры пирамидного тракта при травме, кровоизлиянии приводит к утрате мышечного тонуса (вялый паралич), утрате способности выполнять некоторые виды движений. Повреждение двигательной коры за счет утраты тормозного влияния на экстрапирамидную систему, на спинальные рефлексы вызывает при восстановлениии функций нижележащих структур нарушения в виде гиперрефлексии, гипертонуса мышц, т.е. вялого паралича, развивается спастический.

Физиология человека. Общая. Спортивная. Возрастная (19 стр.)

6.3. Роль различных отделов цнс в регуляции движений

Спинной мозг обеспечивает протекание многих элементарных двигательных рефлексов, включение которых в сложные двигательные акты и регуляция по мощности, пространственной ориентации и моменту включения осуществляется вышележащими отделами головного мозга под контролем коры больших полушарий.

6.3.1. Роль спинного мозга и подкорковых отделов ЦНС в регуляции движений

Спинной мозг осуществляет ряд элементарных двигательных рефлексов: рефлексы на растяжение (миотатические и сухожильные рефлексы, например коленный рефлекс), кожные сгибательные рефлексы(например защитный рефлекс отдергивания конечности при уколах, ожогах), разгибательные рефлексы(рефлекс отталкивания от опоры, лежащий в основе стояния, ходьбы, бега), перекрестные рефлексы и др.

Элементарные двигательные рефлексы включаются в более сложные двигательные акты – регуляцию деятельности мышц-антагонистов, ритмических и шагательных рефлексов, лежащих в основе локомоций и других движений.

Для сгибательного движения в суставе необходимо не только сокращение мышц-сгибателей, но и одновременное расслабление мышц-разгибателей. При этом в мотонейронах мышц-сгибателей возникает процесс возбуждения, а в мотонейронах мышц-разгибателей – торможение. При разгибании сустава, наоборот, тормозятся центры сгибателей и возбуждаются центры разгибателей. Такие координационные взаимоотношения между спинальными моторными центрами названы реципрокной (взаимосочетанной) иннервацией мышц-антагонистов. Однако реципрокные отношения между центрами мышц-антагонистов в необходимых ситуациях (например, при фиксации суставов, при точностных движениях) могут сменяться одновременным их возбуждением.

Составной частью различных сложных двигательных действий, как произвольных, так и непроизвольных, часто являются ритмические рефлексы. Это одна из форм древних и относительно простых рефлексов. Они особенно выражены при выполнении циклической работы, включаются в шагательные рефлексы. Основные механизмы шагательных движений заложены в спинном мозге. Специальные нейроны (спинальные локомоторные генераторы)и многочисленные взаимосвязи внутри спинного мозга обеспечивают последовательную активность различных мышц конечностей, согласование ритма и фаз движений, приспособление движений к нагрузке на мышцы. В среднем мозгу расположены нейроны «локомоторной области»,которые включают этот механизм и регулируют мощность работы мышц, обеспечивая примитивную форму локомоции – без ориентации в пространстве.

Нейроны промежуточной продольной зоны коры мозжечка согласуют лозные реакции с движениями. Они выполняют также точные расчеты по ходу движений, необходимые для коррекции ошибок и адаптации моторных программ к текущей ситуации.Программирование каждого последующего шага осуществляется ими на основе анализа предыдущего. Кроме того, производится согласование движений рук и ног, и особенно – регуляция активности мышц-разгибателей, обеспечивающих опорную фазу движения. Значение мозжечка в четком поддержании темпа ритмических движенийобъясняют геометрически правильным чередованием рядов эфферентных клеток Пуркинье и походящих к ним афферентных волокон.

К управлению ритмическими движениями непосредственное отношение имеют активирующие и угнетающие отделы ретикулярной формации,влияющие на силу и темп сокращения мышц, а также подкорковые ядра,которые организуют автоматическое их протекание и содружественные движения конечностей. Включение древних форм ритмических движений (циклоидных)в акт письма позволяет человеку перейти от отдельного начертания букв к обычной письменной скорописи. То же самое происходит при освоении акта ходьбы – с переходом от отдельных шагов к ритмической походке. Плавность ритмических движений,четкое чередование реципрокных сокращений мышц обеспечивают премоторные отделы коры.

6.3.2. Роль различных отделов коры больших полушарий

Функцией комплекса различных корковых областейявляется определение целесообразности локомоций, их смысла, ориентации в пространстве, перестройка программ движений в различных ситуациях, включение ритмических движений как составного элемента в сложные акты поведения. Об участии различных корковых областей в регуляции циклических движений можно судить по появлению в их электрической активности медленных потенциалов в темпе движения – «меченых ритмов» ЭЭГ, а при редких движениях – по изменениям огибающей амплитуду ЭЭГ кривой.

В организации двигательных актов участвуют практически все отделы коры больших полушарий.Моторная область коры (прецентральная извилина) посылает импульсы к отдельным мышцам,преимущественно к дистальным мышцам конечностей. Объединение отдельных элементов движения в целостный акт («кинетическую мелодию») осуществляют вторичные поля премоторной области. Они определяют последовательность двигательных актов,формируют ритмические серии движений, регулируют тонус мышц. Постцентральная извилина коры представляет собой общечувствительное поле, которое обеспечивает субъективное ощущение движений.Нижнетеменные области коры (задние третичные поля) формируют представления о взаимном расположении различных частей тела и положении тела в пространстве, обеспечивают точную адресацию моторных команд к отдельным мышцам и пространственную ориентацию движений. Области коры, относящиеся к лимбической системе (нижние и внутренние части коры), ответственны за эмоциональную окраску движенийи управление вегетативными их компонентами.

Читайте так же:
Как отрегулировать реле давления если оно не отключается

В высшей регуляции произвольных движений важнейшая роль принадлежитпереднелобным областям (передним третичным полям). Здесь помимо обычных вертикальных колонок нейронов существует принципиально новый тип функциональной единицы – в форме замкнутого нейронного кольца. Циркуляция импульсов в этой замкнутой системе обеспечивает кратковременную память. Она сохраняет в коре возбуждение между временем прихода сенсорных сигналов и формированием ответной эфферентной команды. Такой механизм служит основой сенсомоторной интеграции при программировании движений, при осуществлении зрительно-двигательных реакций.

Функцией переднелобной (третичной) области корыявляется сознательная оценка текущей ситуации и предвидение возможного будущего, выработка цели и задачи поведения, программирование произвольных движений, их контроль и коррекция. Соответствие выполняемых действий поставленным задачам придает движениям человека определенную целесообразность и осмысленность. При поражении лобных долей движения человека становятся бессмысленными.

6.3.3. Речевая регуляция движений

Спецификой регуляции движений у человека является то, что они подчиненыречевым воздействиям, т. е. могут программироваться лобными долями в ответ на поступающие извне словесные сигналы, а также благодаря участию внешней или внутренней речи (мышления) самого человека. В этой функции принимают участие расположенные в левом полушарии человека сенсорный центр речи Вернике и моторный центр речи – центр Брока. Считают, что афферентная импульсация от речевой мускулатуры является важным ориентиром, дополняющим проприоцептивные сигналы от работающих мышц, а формирующиеся на речевой основе избирательные связи в коре облегчают составление моторных программ.

Эта управляющая система еще не развита у ребенка 2–3 лет. Она появляется лишь к 3–4 годам. Внешняя речь, сменяясь постепенно шепотом и переходя затем во внутреннюю речь, становится важным регулятором моторных действий взрослого человека.

6.4. Нисходящие моторные системы

Высшие отделы головного мозга осуществляют свои влияния на деятельность нижележащих отделов, в том числе спинного мозга, через нисходящие пути, которые группируют обычно в две основные нисходящие системы – пирамидную и экстрапирамидную.

В настоящее время предлагают подразделять основные нисходящие пути, исходя из расположения нервных окончаний в спинном мозге и функциональных различий, на следующие две системы: более молодую латеральную, волокна которой оканчиваются в боковых (латеральных) частях спинного мозга и связанную преимущественно с мускулатурой дистальных звеньев конечностей(сюда относят корково-спинномозговую и красно-ядерно-спинномозговую системы), и древнюю медиальную, волокна которой оканчиваются во внутренних (медиальных) частях белого вещества, связанную главным образом с мускулатурой туловища и проксимальных звеньев конечностей,состоящую из вестибуло-спинномозговой и ретикуло-спинномозговой систем.

Пирамидная система выполняет три основные функции:

• посылает мотонейронам спинного мозга импульсы – команды к движениям (пусковые влияния);

• изменяет проведение нервных импульсов во вставочных спинальных нейронах,облегчая протекание нужных в данный момент спинномозговых рефлексов;

• осуществляет контроль за потоками афферентных сигналовв нервные центры, выключая постороннюю информацию и обеспечивая обратные связи от работающих мышц.

Урок биологии "Строение и функции головного мозга" в 8-м классе

– дать общие топографические сведения о положении головного мозга в черепе, его строении и функциях,
— раскрыть роль продолговатого, среднего, промежуточного мозга и мозжечка в осуществлении условиях рефлексов и выяснить их значение.

воспитательная: дать сведения по профилактике травматизма, антиалкогольная и антиникотиновая пропаганда.

развивающая: продолжить развитие умений и навыков наблюдать и описывать эксперимент.

Оборудование: таблица “Строение головного мозга”, разборные модели головного мозга.

Ход урока

На доске эпиграф к уроку: “Мозг (голову) надо беречь, в меру нагружать и не травмировать”.

Урок начинается с актуализации знаний о головном мозге.

— Что вам известно о головном мозге?

— Что хотели бы узнать?

Ученики сами определяют в процессе беседы цель урока, которую учитель записывает на доске.

Узнать: особенности строения головного мозга, функции основных отделов.

Местоположение, размеры головного мозга: ( головной мозг располагается в черепе человека и имеет сложную форму. Масса головного мозга у взрослого человека колеблется от 1100 до 2000 г, составляя в среднем 1300-1400 г. Это всего около 2% от массы тела, но составляющие мозг клетки потребляют до 25% энергии, вырабатываемой в организме. Обычно масса головного мозга у женщин несколько меньше, чем у мужчины, это различие обусловлено разной массой их тел.

Проблема: можно ли утверждать, что чем больше мозг (голова), тем умнее человек?

Подумайте: у слона самый большой мозг, но он не самое умное животное, так как важно соотношение веса мозга к весу тела. У слона оно невысокое, а у дельфина – выше, чем у человека. Но ведь человек держит рыбку, а дельфин за ней прыгает, а не наоборот. Почему?

Многие думают, что чем больше мозг, тем умнее человек. Вес мозга И.С. Тургенева 2012 г, Анатоля Франса – 1017 г, а у Луи Пастера (создателя микробиологии), как показало вскрытие, после перенесенной болезни вообще не работала половина переднего мозга. Выскажите ваше мнение.

Рассмотрим внешний вид головного мозга на муляже:

— расположение белого и серого вещества;
— наличие извилин;
— кора больших полушарий.

Изучаем отделы головного мозга, и заполняем схему:

Выполним задание: на немом рисунке подпишите названия всех отделов.

Познакомимся со строением и функциями отделов головного мозга.

Продолговатый мозг является продолжением спинного мозга, поэтому в их строении много общего. Только серое вещество у продолговатого мозга располагается отдельными скоплениями – ядрами. Сходны и функции: рефлекторные и проводящие. Через ядра продолговатого мозга осуществляются многие рефлекторные процессы, например такие, как кашель, чихание, слезоотделение и др. Здесь же расположены нервные центры, ответственные за акты глотания, работу пищеварительных желез. В продолговатом мозге лежат и жизненно важные центры, участвующие в регуляции дыхания, деятельности сердца и сосудов. Повреждение этих центров приводит к смерти человека.

Продолговатый мозг не только “большая дорога”, но и “главный коммутатор телефонных связей” между головным и спинным мозгом. На уровне продолговатого мозга некоторые нервные пути перекрещиваются: левые идут к правому полушарию, а правые — к левому. Типичная форма бабочки серого вещества спинного мозга нарушается. Серое вещество имеет вид скоплений тел нервных клеток — ядер.

Еще в XIX в. в продолговатом мозге был открыт так называемый узел жизни. Укол в области этого узла у кролика вызывал остановку дыхания и смерть.

Подобные опыты провели и на лягушке. У нее после подобного укола прекращались движения, но через некоторое время она начинала дышать, отвечать на раздражения лапок, а потом переворачивалась со спины на живот. Как же объяснить различную реакцию животных на укол в продолговатый мозг? Новые опыты помогли ответить на этот вопрос. После укола в продолговатый мозг кролику сделали искусственное дыхание, и он ожил.

В продолговатом мозге нет никакого особого узла жизни. Укол просто вызывает глубокий шок, тяжелую нервную реакцию, расстройство многих функций организма. В том месте, где делали укол, вообще нет нервных клеток, а проходят нервные волокна. Удар по ним вызывает сильное нервное возбуждение и временный паралич животного.

В продолговатом мозге множество нервных центров. Здесь сосредоточены центры, управляющие кровеносными сосудами (сосудодвигательный), центры регуляции сердцебиения, дыхания, глотания, слюноотделения, чихания, кашля, слезоотделения и др. Это все центры безусловных рефлексов. Здесь же находятся центры, регулирующие положение тела в пространстве. Функции этих центров контролируются высшими отделами головного мозга.

Опыт №1. Доказать, что глотательный безусловный рефлекс продолговатого мозга не может осуществляться без раздражения корня языка, рефлексогенной зоны этого рефлекса. ( Учащиеся по команде делают в быстром темпе подряд несколько глотательных движений и убеждаются, что при отсутствии раздражителя в данном случае, слюны) сделать глотательные движения невозможно. При воздействии раздражителя на корень языка акт глотания происходит непроизвольно, и человек может проглотить несъедобный предмет.

Поэтому нельзя маленьким детям давать для игры мелкие предметы (винтики, гайки, пуговицы, шарики).

Малыши часто тянут в рот и могут непроизвольно проглотить мелкие предметы.

Мост — это место, где располагаются нервные волокна, по которым нервные импульсы идут вверх в кору большого мозга или обратно, вниз – в спинной мозг, к мозжечку, к продолговатому мозгу. Здесь же находятся центры, связанные с мимикой, жевательными функциями.

Читайте так же:
Когда надо регулировать клапана на гранте 8 клапанной

Средний мозг – участвует в рефлекторной регуляции различного рода движений, возникающих под влиянием зрительных и слуховых импульсов. Например, он обеспечивает изменение величины зрачка, кривизны хрусталика в зависимости от яркости света или поворот головы, глаз в сторону источника света.

Опыт № 2 Пронаблюдать рефлексы среднего мозга .

Доказать это ориентировочный рефлекс возникает на любой новый раздражитель и проявляется в движениях к этому раздражителю.

Стук карандашом по столу. Многие учащиеся поднимают глаза: новый раздражитель вызвал ориентировочный рефлекс. Раздражитель действовал на орган слуха. Продолжая опыт, учитель ходит по рядам, внезапно кладет руку на плечо одному из учеников. Тактильный раздражитель вызвал ту же ориентировочную реакцию – поворот головы в сторону раздражителя. Вывод: ориентировочный рефлекс может быть вызван любым раздражителем – слуховым, зрительным, тактильным. Важно только, чтобы раздражитель был новый. Можно показать, что при повторении раздражитель теряет новизну и ориентировочный рефлекс больше не проявляется. Можно обратить внимание и на обобщенность этой реакции: движение совершается в сторону нового раздражителя, независимо от того, где этот раздражитель находится – впереди, сзади, справа, слева.

Промежуточный мозг проводит импульсы к коре полушарий большого мозга от рецепторов кожи, органов чувств. В его отделах расположены также центры жажды, голода, поддержания постоянства внутренней среды организма. С участием промежуточного мозга осуществляются функции желез внутренней секреции, вегетативной нервной системы.

Опыт 3. Определить, какой рефлекс промежуточного мозга может быть выявлен при выполнении команды “Замри”.

Учитель предлагает учащимся встать, а затем дает команду “Замри”. Учащиеся застывают в разных позах, что дает возможность пронаблюдать позный рефлекс промежуточного мозга.

Команда “Замри” вызвала остановку движения. При этом одновременно должны были быть заблокированы движения во многих суставах тела. Под действием импульсов, идущих от промежуточного мозга, мышцы одновременно сокращаются, фиксируя новую позу тела.

Мозжечок принимает участие в координации движений, делает их точными, целенаправленными. При повреждении мозжечка движения человека нарушены, ему трудно удержать равновесие, его походка напоминает походку потерявшего ориентацию человека.

Опыт 4. Пронаблюдать координацию работы мышц, осуществляемую мозжечком, при выполнении пальценосовой мозжечковой пробы.

По команде учителя, ученики закрывают глаза, протягивают вперед руку с вытянутым указательным пальцем и его кончиком дотрагиваются до кончика носа. Нужно обратить внимание на то, что движение осуществлялось быстро и плавно, хотя в нем участвовало более 30 мышц. Мозжечок получает импульсы от многих рецепторов и обрабатывает их. Благодаря деятельности мозжечка ответная реакция организма происходит с учетом всех внешних факторов. Поражение мозжечка при опьянении:

  1. Почему опьяневший человек, пытаясь сделать один шаг, вынужденно делает по инерции несколько шагов в том же направлении?
  2. Почему нетрезвые водители резко поворачивают машину, резко нажимают на тормозную педаль и к чему это может привести?

Обобщение знаний проводится в виде фронтальной беседы с заполнением таблицы ( таблица проецируется на экран)

Безусловные рефлексы головного мозга.

Отдел мозгаНазвание рефлексаРаздражительОтветная реакция
Продолговатый мозгГлотательный рефлексМеханическое воздействие на корень языкаАкт глотания
Средний мозгтонический рефлекс, сохраняющий устойчивость телаВыход тела из состояния неустойчивого равновесияДвижения, восстанавливающие устойчивость тела, не допускающие его падения
Средний мозгОриентировочный рефлексЛюбой раздражитель обладающий новизнойПоворот в сторону из раздражителя, фиксация взгляда на нем, прислушивание и т.д.
Промежуточный мозгПозный рефлексПрекращение движения, человек принимает новую позуСохранение позы путем сокращения мышц противоположного действия, закрепляющих положение костей в суставах.

Проверка степени усвоения знаний проводится с помощью теста.

1. Средняя масса головного мозга взрослого человека:

А) меньше 950 г;
Б) 950-1100 г;
В) 1100 – 2000 г

2. Головной мозг человека состоит из:

А) ствола и полушарий большого мозга;
Б) мозжечка и полушарий большого мозга;
В) ствола, мозжечка, полушарий большого мозга.

3. Продолговатый мозг является продолжением:

А) среднего мозга;
Б) спинного мозга;
В) промежуточного мозга.

4. В головном мозге полушария и кору имеют:

А) средний мозг и полушария большого мозга
Б) мозжечок и промежуточный мозг;
В) полушария большого мозга и мозжечок.

5. Какие отделы головного мозга относятся к стволу мозга:

А) средний мозг;
Б) продолговатый мозг;
В) мозжечок;
Г) промежуточный мозг;
Д) мост

6. Какой отдел головного мозга является как бы продолжением спинного мозга в полости черепа:

А) средний мозг;
Б) продолговатый мозг;
В) промежуточный мозг

7. Какой отдел головного мозга содержит двигательные рефлекторные центры, обеспечивающие поворот глазных яблок:

А) мост;
Б) средний мозг;
В) промежуточный мозг.

Домашнее задание: прочитать текст учебника, устно ответить на вопросы в конце параграфа.

Роль двигательных областей коры, базальных ганглиев и таламуса в организации движений

Важнейшей двигательной областью коры является прецентральная извилина (рис. 66, а). Ее функции были изучены путем раздражения обнаженной поверхности мозга и анализа параличей у больных инсультами. В 50-х годах XX в. американским ученым В. Пенфилдом были обнаружены интересные закономерности: во-первых, двигательная кора организована по соматотоническому принципу, т. е. каждый ее участок связан с определенной частью тела, во-вторых, области двигательной коры тех частей тела, которые осуществляют более разнообразные функции, больше по площади. Наиболее обширными, учитывая пропорции тела, являются зоны, управляющие мышцами кисти руки и мимическими мышцами (см. рис. 66, b). Двигательные и чувствительные зоны коры примыкают друг к другу (см. рис. 66, а) и «чувствительный гомункулюс» почти повторяет карту двигательных зон (см. рис. 66, с). Этот рисунок иногда называют «двигательным гомункулюсом». Предполагается, что определенные типы движений, в которые вовлечены отдельные мышцы, представлены в различных участках двигательной области, причем размеры каждого участка зависят от сложности контролируемых им движений. Например, для участия в речевой функции двигательный центр мозга не только посылает команды к мышцам языка и гортани, но и хранит в памяти последовательность этих команд. Это объясняет, почему рост и развитие полей двигательной области начинаются в раннем детстве и продолжаются вплоть до зрелого возраста. Стимуляция двигательной коры вызывает лишь сокращение отдельных мышц или движение в суставах. Сложные целенаправленные двигательные акты так «запустить» невозможно. По-видимому, двигательная кора является той частью общей структуры регуляции движений, где замысел движения преобразуется в его программу. Фактически двигательная кора — первый компонент структуры регуляции движений, с которого начинается выполнение движения.

Рис. 66. Карта двигательных (b) и сенсорных (с) зон коры головного мозга человека

Нейроны коры, непосредственно связанные с мотонейронами спинного мозга, называются клетками Беца (по имени впервые описавшего их русского анатома XIX в.). Они лежат в глубине двигательной коры и относятся к самым крупным пирамидным нейронам головного мозга. Их аксоны сходятся в толстый пучок нервных волокон, называемый пирамидным трактом. Дойдя до спинного мозга, аксоны клеток Беца перекрещиваются: пучок, идущий от правого полушария, переходит на левую сторону и наоборот. Вот почему регуляция движений левой половины тела контролируется правым (контрлатеральным — противоположным) полушарием, а правой стороны — левым.

Двигательная область коры большого мозга является областью, воспринимающей, анализирующей и синтезирующей раздражения, идущие от скелетно-мышечной системы человека, и участвующей в межанализаторной интеграции. Относительно раннее формирование двигательной коры в онтогенезе, очевидно, определяется ее функциональной значимостью в обеспечении адекватного поведения детей. Двигательная зона коры обеспечивает осуществление произвольных движений, интегрируя деятельность различных анализаторов всей коры мозга и деятельность всего мозга, благодаря чему осуществляется срочная перестройка путей и форм контактов организма с окружающей средой.

Определенная морфофункциональная зрелость двигательной области коры головного мозга, необходимая для поддержания процессов регуляции движений, отмечается у новорожденных уже с первых дней жизни.

Кроме двигательной области коры головного мозга, в регуляции движений участвуют базальные ганглии, таламус, мозжечок и ствол головного мозга.

Базальные ганглии (скопления нервных клеток, находящихся у основания больших полушарий, формирующиеся на ранних стадиях развития мозга, представляют собой важное подкорковое связующее звено между ассоциативными и двигательными зонами мозга. Базальные ганглии — это четыре образования: полосатое тело (стриатум), бледный шар (паллидум), субталамическое ядро и черная субстанция. Базальные ганглии получают все виды сенсорной информации, и, по-видимому, их функция заключается в «запуске» движений определенного типа — медленных целенаправленных движений конечностей в пространстве. Считается, что на уровне базальных ганглиев имеется готовый набор программ, которые используются в сложных двигательных действиях.

Читайте так же:
Регулировка холостого хода на патриоте

В таламус (структура промежуточного мозга) поступает вся соматосенсорная информация, необходимая для построения любой последовательности движений, и через таламус проходят сигналы от базальных ганглиев и мозжечка к коре.

Мозжечок, имеющий сложную структуру, играет особую роль в нервной регуляции движений, мышечного тонуса и позы.

Следует отметить, что все области коры больших полушарий, в том числе и двигательные, а также другие отделы мозга посылают информацию к мозжечку, к нему же через ассоциативные зоны коры поступают сигналы от периферических органов.

Основное значение мозжечка — дополнение и коррекция деятельности остальных звеньев системы регуляции движений. Экспериментальные данные позволяют выделить следующие функции мозжечка в осуществлении движений: регуляцию позы и мышечного тонуса, коррекцию медленных целенаправленных движений, выполнение последовательности быстрых целенаправленных движений.

В процессе осуществления движений и мозжечок, и базальные ганглии посылают сигналы к двигательной коре через таламус. Обе эти структуры участвуют в выработке программы движений. Таким образом, все эти структуры мозга — двигательная кора, базальные ганглии, таламус и мозжечок исполняют функцию формирования программы целенаправленных движений.

Ствол головного мозга — образование головного мозга, через которое проходят нисходящие пути к спинному мозгу. Эти пути условно можно разделить на два вида — возбуждающие действия мышц сгибателей и возбуждающие действия мышц-разгибателей. Они оканчиваются в разных областях спинного мозга. Через ствол мозга проходят и восходящие пути, связывающие между собой структуры ЦНС, которые осуществляют регуляцию движений. Структуры ствола мозга играют важную роль в регуляции позы, обеспечивающей эффективную реализацию движений (позные компоненты двигательной активности).

Спинной мозг — наиболее древнее образование нервной системы, включенное в структуру регуляции движений.

Нейроны спинного мозга образуют серое вещество, которое имеет на срезе вид буквы «Н». Передние и задние части серого вещества называются передними и задними рогами.

В передних рогах находятся двигательные нейроны, аксоны которых подходят к мышцам. В нейронах передних рогов заканчиваются нисходящие пути центральной нервной системы, регулирующие движения. Двигательный нейрон (мотонейрон) и его аксон вместе с мышечными волокнами, которые он контролирует, называют двигательной единицей (ДЕ). Один мотонейрон с помощью разветвлений своего аксона способен контролировать много мышечных волокон. Число волокон, управляемых одним мотонейроном, варьирует в зависимости от того, насколько тонкими должны быть движения мышцы. Например, в глазодвигательных мышцах на каждый нейрон приходится примерно по три мышечных волокна; в мышцах, приводящих в движение бедро, на один нейрон приходится сотня мышечных волокон.

Сила, которую может развить мышца, зависит от числа содержащихся в ней мышечных волокон. У мотонейронов, контролирующих крупные мышцы, такие как бицепсы или мышцы голени, аксоны имеют много разветвлений, для того чтобы передавать импульсы на мышечные волокна, причем веточки аксонов в этом случае гораздо толще, чем у нейронов, управляющих мелкими мышцами пальцев.

В задних рогах находятся нейроны, которые выполняют сенсорные функции и передают сигналы в вышележащие центры, в симметричные структуры противоположной стороны или к передним рогам спинного мозга.

Белое вещество спинного мозга состоит из миелиновых волокон, собранных в пучки. Эти волокна могут быть короткими (связывают нейроны разных сегментов или симметричные нейроны противоположных сторон спинного мозга) или длинными (восходящие — к головному мозгу и нисходящие — от головного мозга к спинному).

В каждой мышце есть чувствительные сенсорные нервы, по которым передается проприоцептивная информация — информация о положении и движении собственного тела, о напряжении мышцы, о положении сустава, от которых передается информация к чувствительным нервам. Специальные датчики — рецепторы — находятся либо в глубине мышцы, либо в сухожилиях — местах прикрепления мышцы к кости. Эта информация передается либо в спинной мозг, либо в вышележащие нервные центры.

Рис. 67. Коленный рефлекс

Спинальные рефлексы. Особый интерес представляет собственно рефлекторная деятельность спинного мозга (так называемые спинальные рефлексы) — относительно простые виды реакции, которые осуществляются на уровне спинного мозга без участия вышележащих структур.

Рассмотрим некоторые рефлексы спинного мозга на примере коленного рефлекса (рис. 67) и рефлекса болевого раздражения при уколе пальца иглой (кнопкой) (рис. 68).

В первом случае при ударе молоточком по сухожилию ниже коленной чашки растягивается расположенное выше сухожилие, прикрепленное непосредственно к четырехглавой мышце бедра. В результате активируются находящиеся в этом сухожилии рецепторы, которые по сенсорным волокнам передают возбуждение спинальным мотонейронам, и последние заставляют мышцы бедра сократиться, а ногу — подпрыгнуть. Весь рефлекс совершается очень быстро, обычно меньше чем за секунду.

Другие локальные реакции, которые осуществляются на уровне спинного мозга, связаны, например, с болевыми раздражителями.

При ударе током или случайном уколе рука отдергивается еще до того, как ощущается боль. В этом случае по чувствительным нервам информация передается в спинной мозг, а по двигательным нервам мгновенно передается сигнал к мышцам.

Внутренние системы спинного мозга осуществляют координацию работы мышц сгибателей и разгибателей, позволяя уравновешивать движения рук, ног, тела при выполнении различных по сложности движений.

Рис. 68. Рефлекс болевого раздражения

И все-таки при выполнении большинства движений мышцы сокращаются, т. е. движение реализуется, только если мы этого хотим, если это «не ответ на внешнее раздражение, а решение задачи» (Н.А. Бернштейн). При регуляции произвольных движений в двигательной системе осуществляется последовательная переработка нервных сигналов — от инициации движения моторной корой до сокращения мышц, контролирующих положение и стабильность суставов, по командам спинальных мотонейронов. Параллельные модифицирующие системы мозжечка, базальных ганглиев ствола мозга обеспечивают координированное и гладкое выполнение двигательной программы, поддержание необходимой позы, эффективность решения двигательной задачи.

Тест по теме "Строение и функции головного мозга" с ответами
тест по биологии (8 класс) на тему

Тест предназначается для учащихся 8 класса, изучающих биологию по учебнику Н.И.Сонина.»Биология.Человек». Он содержит 4 варианта разного уровня сложности. В конце теста размещены ответы.

Скачать:

ВложениеРазмер
test_stroenie_golovnogo_mozga.docx30.42 КБ

Предварительный просмотр:

СТРОЕНИЕ И ФУНКЦИИ ГОЛОВНОГО МОЗГА. ПОЛУШАРИЯ МОЗГА

Вариант 1 Задание. Выберите один правильный ответ.

1. Масса головного мозга человека колеблется в пределах:

A. От 500 до 1000 г

Б. От 1100 до 2000 г

B. От 2000 до 2500 г

2. Наиболее древней в эволюционном отношении частью мозга является:

3. Центры управления сердечно-сосудистой, дыхательной и пищеварительной системами расположены:

A. В среднем мозге

Б. В промежуточном мозге

B. В продолговатом мозге

4. Часть мозга, связывающая кору со спинным мозгом:

В. Промежуточный мозг

5. Ориентировочные рефлексы на зрительные и слуховые импульсы осуществляются:

A. Промежуточным мозгом

Б. Средним мозгом

6. Центры жажды, голода, а также поддержания постоянства внутренней среды организма находятся в:

A. Промежуточном мозге

Б. В среднем мозге

7. Осуществление координации движений и поддержание тонуса скелетных мышц – это функция:

А. Продолговатого мозга

8. Полушария большого мозга впервые появились у:

9. Полушария большого мозга соединены между собой с помощью:

А. Мозолистого тела

10. Значение борозд и извилин на поверхности коры состоит в:

A. Увеличении активности нейронов коры

Б. Увеличении объема мозга

B. Увеличении площади поверхности коры

11. Зрительная зона коры расположена:

A. В лобной доле

Б. В височной доле

B. В затылочной доле

12. Слуховая зона коры расположена:

A. В лобной доле

Б. В височной доле

B. В затылочной доле

13. Информация от рецепторов кожи, мышц и органов чувств поступает для анализа:

A. В чувствительные центры коры

Б. В двигательные центры коры

14. За образное мышление, восприятие музыки и творческие способности отвечает:

A. Левое полушарие

Б. Правое полушарие

Задание. Вставьте пропущенное слово.

1. Головной мозг расположен в полости. и имеет массу от. до. потребляя. % энергии, вырабатываемой в организме человека.

2. Головной мозг состоит из ствола. и полушарий большого мозга.

3. Ствол головного мозга включает в себя следующие отделы: продолговатый мозг. средний мозг и. мозг.

4. Продолговатый мозг сходен по строению со. мозгом и является центром защитных рефлексов, таких как. чихание, а также центром регуляции дыхания, работы. системы и. системы.

5. – отдел головного мозга, который проводит импульсы вверх, в. большого мозга, и вниз, в. мозг.

6. мозг участвует в рефлекторной регуляции движений, возникающих под влиянием. и. раздражителей.

7. мозг проводит импульсы в кору полушарий большого мозга от рецепторов. и. в нем расположены центры. и жажды, осуществляется регуляция функций. желез.

8. состоит из двух полушарий, кора его покрыта. и извилинами, он отвечает за. движений.

9. Особое образование ствола мозга – . формация получает информацию от органов. и. органов и регулирует активность всех отделов головного мозга, участвует в проявлении внимания, эмоций, регуляции состояния сна и.

10. Самый крупный отдел ЦНС – полушария большого мозга, соединенные между собой. телом и состоящие из серого и. вещества.

11. вещество составляет поверхностный слой – . полушарий большого мозга, поверхность которой образует борозды и.

12. Крупные. делят полушария на доли: лобную. затылочную и.

13. Под корой находится белое вещество, образующее. пути мозга, и крупные скопления серого вещества – . ядра, а также полости – боковые.

Задание. Дайте краткий ответ из одного-двух предложений.

1. Каковы морфологические особенности головного мозга?

2. На какие отделы можно разделить головной мозг, какие из них эволюционно более молодые, а какие – древние?

3. Назовите основные функции отделов стволовой части мозга.

4. Что такое ретикулярная формация? Каковы ее функции?

5. Что вы знаете о мозжечке и почему его называют малым мозгом?

6. Опишите строение полушарий большого мозга.

7. Охарактеризуйте основные функциональные зоны коры полушарий большого мозга.

8. В чем состоит различие между правым и левым полушариями головного мозга?

9. Зависят ли умственные способности человека от размера и массы его мозга?

Задание. Дайте полный развернутый ответ.

1. Во время операции на головном мозге у лабораторного животного было выяснено, что при прикосновении к некоторым участкам коры наблюдаются непроизвольные движения. Объясните это наблюдение.

2. Почему повреждение основания черепа при ДТП является наиболее частой причиной смертельных случаев?

3. Остановка кровоснабжения мозга на 20 секунд вызывает потерю сознания; реанимация возможна, если клиническая смерть продолжается не более 5–6 минут. С какими особенностями нервных центров это связано?

4. Почему в состоянии алкогольного опьянения у человека нарушается походка?

5. При инсульте люди теряют способность говорить, хотя понимают все, что им говорят. Как вы думаете, почему?

6. Иногда в случае черепных травм резко ухудшается зрение, хотя сами глаза не повреждены. Как вы это можете это объяснить?

7. Предложите объяснение физиологической основы наркотической зависимости.

Ответы. СТРОЕНИЕ И ФУНКЦИИ ГОЛОВНОГО МОЗГА. ПОЛУШАРИЯ МОЗГА

1 – Б; 2 – А; 3 – В; 4 – А; 5 – Б; 6 – А; 7 – В; 8 – Б; 9 – А; 10 – В; 11 – В; 12 – Б; 13 – А; 14 – Б.

1. Черепа, 1100 г, 2000 г, 25. 2. Мозжечка. 3. Мост, промежуточный. 4. Спинным, кашель, пищеварительной, сердечнососудистой. 5. Мост, кору, спинной. 6. Средний, зрительных, слуховых. 7. Промежуточный, кожи, органов чувств, голода, эндокринных. 8. Мозжечок, бороздами, координацию. 9. Ретикулярная, чувств, внутренних, бодрствования. 10. Мозолистым, белого. 11. Серое, кору, извилины. 12. Борозды, теменную, височную. 13. Проводящие, подкорковые, желудочки.

1. Расположен в полости черепа, имеет сложную форму и массу от 1100 до 2000 г.

2. Ствол, состоящий из продолговатого мозга, моста, среднего и промежуточного мозга; мозжечок и большой мозг. Наиболее древняя в эволюционном отношении стволовая часть, особенно продолговатый мозг, а наиболее молодое образование – кора полушарий большого мозга.

3. Продолговатый мозг отвечает за защитные рефлексы (кашель, чихание, рвота, слезоотделение), регуляцию дыхания, деятельности пищеварительной и сердечно-сосудистой систем. Средний мозг регулирует движения, возникающие под воздействием слуховых и зрительных раздражителей, ориентировочные рефлексы. Промежуточный мозг проводит в кору импульсы от органов чувств и кожи, содержит особую зону – гипоталамус, где находятся центры управления работой эндокринной, вегетативной нервной системы, центры голода, страха, жажды, удовольствия.

4. Это сложное образование, состоящее из множества нервных клеток с сильно развитыми отростками, образующими густую сеть, придающее головному мозгу сильные импульсы возбуждения. Особенно активна эта часть мозга, когда человек активно трудится, умственно или физически. Ретикулярная формация возбуждает все отделы мозга, поддерживая их активность, сила возбуждения различных отделов определяется конкретной жизненной ситуацией.

5. Такое название дано за сходство в строении с полушариями большого мозга, т. к. мозжечок имеет два полушария, соединенных червем, поверхность их также образует борозды и извилины, а его внутренняя структура представлена серым, белым веществом и корой.

6. Самый крупный отдел головного мозга, состоящий из двух полушарий, соединенных мозолистым телом, каждое из которых образовано белым

и серым веществом. Серое вещество формирует кору, состоящую из 18 млрд нейронов, сжатую в борозды и извилины. В белом веществе расположены подкорковые центры и полости боковых желудочков. Полушария делятся бороздами на четыре доли: лобную, затылочную, теменную и височную.

7. В затылочной доле выделяют зрительную зону, в височной – слуховую и обонятельную, в этих зонах происходит анализ информации, поступающей от соответствующих органов чувств. Впереди от центральной извилины расположены ядра двигательной зоны коры, импульсы от которых направлены к нейронам спинного мозга и от них – к скелетным мышцам. Позади центральной борозды расположены ядра чувствительной зоны коры, отвечающей за температурную, болевую, осязательную и мышечную чувствительность, в них анализируются импульсы, поступающие от рецепторов.

8. В левом полушарии находятся центры, обеспечивающие восприятие слуховой и письменной речи, анализ информации и принятие логических решений. Правое полушарие отвечает за образное мышление, музыкальные и художественные способности (у левшей – наоборот).

9. Нет. Способности человека зависят от уровня возбуждения нейронов и скорости образования взаимосвязей между ними, количества связей между клетками, активности клеток той или иной зоны коры.

Вариант 4

1. Впереди от центральной борозды находятся двигательные центры коры, контролирующие функциональную активность определенных групп мышц, поэтому раздражение этих зон во время операции может вызвать непроизвольные движения.

2. В основании черепа расположена стволовая часть мозга, продолговатый мозг, управляющий сердечно-сосудистой, дыхательной и пищеварительной системой. Повреждение этой части мозга может вызвать мгновенную остановку сердца и блокировку дыхания.

3. Нервные клетки мозга потребляют 25 % энергии организма, поэтому при нарушении кровоснабжения возникает серьезный энергетический кризис, и нейроны быстро погибают. Активность и эффективность работы мозга зависит не только от количества нейронов, находящихся в состоянии возбуждения, но и от количества взаимосвязей между ними. После гибели части нейронов рвутся и нейронные мостики, соединяющие их, т. е. отдельные участки мозга перестают функционировать, а эти изменения необратимы.

4. Алкоголь действует на двигательные центры коры и мозжечок, являющийся координатором движений.

5. Инсульт – это кровоизлияние в мозг, который вызывает гибель нейронов и поражение определенных участков мозга. В данном случае нарушена работа двигательных речевых центров лобной доли коры полушарий большого мозга, отвечающие за звуковоспроизведение.

6. При повреждении зрительных центров затылочной доли коры полушарий большого мозга зрение неизбежно ухудшается.

7. Во время приема наркотика особое сочетание психофизиологических ощущений активизирует определенные центры эмоционального удовольствия в гипоталамусе и стимулирует образование новых связей между нейронами; в дальнейшем человеку требуется повторный прием этого препарата для возобновления ощущений, но, т. к. возбудимость нейронов имеет пределы, дозу препарата приходится повышать для усиления эффекта, а при отсутствии химического стимулятора наблюдается психосоматический стресс.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector