Nara-auto.ru

Автосервис NARA
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Фазовращатель в ДВС. Что это такое и основной принцип работы. Разберем VVT, VVT-i, CVVT, VTC, VANOS, VTEC и прочие

Фазовращатель в ДВС. Что это такое и основной принцип работы. Разберем VVT, VVT-i, CVVT, VTC, VANOS, VTEC и прочие

Эффективность двигателя внутреннего сгорания зачастую зависит от процесса газообмена, то есть наполнения воздушно-топливной смеси и отвода уже отработанных газов. Как мы уже с вами знаем, этим занимается ГРМ (газораспределительный механизм), если правильно и «тонко» настроить его, под определенные обороты, можно добиться очень неплохих результатов в КПД. Инженеры давно бьются над этой проблемой, решать ее можно различными способами — например воздействием на сами клапана или же поворотом распределительных валов …

Фазовращатель в ДВС

СОДЕРЖАНИЕ СТАТЬИ

Чтобы клапана ДВС работали всегда правильно и не были подвержены износу, вначале появились просто «толкатели», затем гидрокомпенсаторы, но этого оказалось мало, поэтому производители начали внедрение так называемых «фазовращателей» на распределительные валы.

Зачем вообще нужны фазовращатели?

Чтобы это понять что такое фазовращатели и зачем они нужны, прочтите для начала, полезную информацию ниже. Все дело в том, что двигатель работает не одинаково на различных оборотах. Для холостых и не высоких оборотов идеальными будут «узкие фазы», а для высоких – «широкие».

Узкие фазы – если коленчатый вал вращается «медленно» (холостой ход), то объем и скорость отвода отработанных газов также невелики. Именно здесь идеально применять «узкие фазы», а также минимальное «перекрытие» (время одновременного открытия впускных и выпускных клапанов) – новая смесь не проталкивается в выпускной коллектор, через открытый выпускной клапан, но и соответственно отработанные газы (почти) не проходят во впускной. Это идеальное сочетание. Если же сделать «фазирование» — шире, именно при невысоких вращениях коленчатого вала, то «отработка» может смешаться с поступающими новыми газами, снизив тем самым ее качественные показатели, что однозначно снизит мощность (мотор станет неустойчиво работать или даже заглохнет).

Широкие фазы – когда обороты растут, соответственно растет и объем и скорость перекачиваемых газов. Здесь уже важно быстрее продувать цилиндры (от отработки) и быстрее загонять в них поступающую смесь, фазы должны быть «широкими».

Конечно же руководит открытиями обычный распределительный вал, а именно его «кулачки» (своеобразные эксцентрики), у него есть два конца – один как бы острый, он возвышается, другой просто сделан полукругом. Если конец острый — то происходит максимальное открытие, если округлый (с другой стороны) – максимальное закрытие.

Широкие и узкие фазы

НО у штатных распределительных валов – НЕТ регулировки фаз, то есть они их не могут расширить или сделать уже, все же инженеры задают усредненные показатели – что-то среднее между мощностью и экономичностью. Если завалить валы в одну из сторон, то эффективность, либо экономичность двигателя упадет. «Узкие» фазы, не дадут ДВС развивать максимальную мощность, а вот «широкие» — не будет нормально работать на малых оборотах.

Вот бы регулировать в зависимости от оборотов! Это и было изобретено – по сути это и есть система регулирования фаз, ПО ПРОСТОМУ — ФАЗОВРАЩАТЕЛИ.

Принцип работы

Сейчас не будем лезть вглубь, наша задача понять, как они работают. Собственно обычный распредвал на конце имеет распределительную шестерню, которая в свою очередь соединяется с ремнем или цепью ГРМ.

Распредвал с фазовращателем на конце имеет немного другую, измененную конструкцию. Здесь располагаются две «гидро» или электроуправляемые муфты, которые с одной стороны также зацепляются за привод ГРМ (цепь или ремень), а с другой стороны с валами. Под воздействием гидравлики или электроники (есть специальные механизмы) внутри этой муфты могут происходить сдвиги, таким образом, она может немного поворачиваться, тем самым меняя открытие или закрытие клапанов.

вращатели

Нужно отметить, что не всегда фазовращатель устанавливается на два распредвала сразу, бывает что один находится на впускном или на выпускном, а на втором просто обычная шестерня.

Как обычно процессом руководит ЭБУ, которая собирает данные с различных датчиков двигателя, таких как положения коленчатого вала, холла, частота вращения двигателя, скорости и т.д.

Сейчас я вам предлагаю рассмотреть основные конструкции, таких механизмов (думаю так у вас больше проясниться в голове).

VVT (Variable Valve Timing), KIA-Hyundai (CVVT), Toyota (VVT-i), Honda (VTC)

Одними из первых предложили поворачивать коленвал (относительно начального положения), компания Volkswagen, со своей системой VVT (на ее основе построили свои системы много других производителей)

Что в нее входит:

Фазовращатели (гидравлические), установлены на впускном и выпускном валу. Они подключены к системе смазки мотора (собственно это масло и закачивается в них).

Если разобрать муфту то внутри есть специальная звездочка наружного корпуса, которая неподвижно соединена с валом ротора. Корпус и ротор при накачивании масла могут смещаться относительно друг друга.

муфта

Механизм закрепляется в головке блока, в ней есть каналы для подводки масла к обеим муфтам, контролируются потоки двумя электрогидравлическими распределителями. Они кстати также закрепляются на корпусе головки блока.

Помимо этих распределителей в системе много датчиков – частоты коленчатого вала, нагрузки на двигатель, температуре охлаждающей жидкости, положения распред и колен валов. Когда нужно повернуть откорректировать фазы (например — высокие или низкие обороты), ЭБУ считывая данные дает приказания распределителям подавать масла в муфты, они открываются и давление масла начинает накачивать фазовращатели (тем самым они поворачиваются в нужную сторону).

Устройство

Холостой ход – поворачивание происходит таким образом, чтобы «впускной» распредвал обеспечил более позднее открытие и позднее закрытие клапанов, а «выпускной» разворачивается так — чтобы клапан закрывался намного раньше до подхода поршня в верхнюю мертвую точку.

Получается, что количество отработанной смеси снижается почти до минимума, причем она практически не мешает на такте впуска, это благоприятно сказывается на работе мотора на холостых оборотах, его стабильности и равномерности.

Схема работы

Средние и высокие обороты – здесь задача выдать максимальную мощность, поэтому «поворачивание» происходит таким образом, чтобы задержать открытие выпускных клапанов. Таким образом, остается давление газов на такте рабочего хода. Впускные в свою очередь открываются после достижение поршня верхней мертвой точки (ВМТ), и закрываются после НМТ. Таким образом, мы как бы получаем динамический эффект «дозарядки» цилиндров двигателя, что несет за собой увеличение мощности.

Читайте так же:
Уаз буханка 409 инжектор регулировка зажигания

Максимальный крутящий момент – как становится понятно, нам нужно как можно больше наполнять цилиндры. Для этого нужно намного раньше открывать и соответственно намного позже закрывать впускные клапана, сберечь смесь внутри и не допустить ее выхода обратно в впускной коллектор. «Выпускные» же в свою очередь, закрываются с некоторым опережением до ВМТ, чтобы оставить небольшое давление в цилиндре. Думаю это понятно.

Таким образом, сейчас работает много похожих систем, из них самые распространенные Renault (VCP), BMW (VANOS/Double VANOS), KIA-Hyundai (CVVT), Toyota (VVT-i), Honda (VTC).

Фазовращатели на обоих валах

НО и эти не идеальные, они могут только смещать фазы в одну или другую сторону, но не могут реально «сузить» или «расширить» их. Поэтому сейчас начинают появляться более совершенные системы.

Honda (VTEC), Toyota (VVTL-i), Mitsubishi (MIVEC), Kia (CVVL)

Чтобы дополнительно регулировать поднятие клапана, были созданы еще более продвинутые системы, но родоначальницей была компания HONDA, со своим мотором VTEC (Variable Valve Timing and Lift Electronic Control). Суть в том, что кроме изменения фаз, эта система может больше поднимать клапана, тем самым улучшая наполнение цилиндров или отвод отработанных газов. У HONDA сейчас используется уже третье поколение таких моторов, которые впитали в себя сразу обе системы VTC (фазовращатели) и VTEC (поднятие клапана), и сейчас она называется – DOHC i-VTEC.

VTEC

Система еще более сложная, она имеет продвинутые распредвалы в которых есть совмещенные кулачки. Два обычных по краям, которые нажимают на коромысла в обычном режиме и средний более выдвинутый кулачок (высокопрофильный), который включается и нажимает клапана скажем после 5500 оборотов. Эта конструкция имеется на каждую пару клапанов и коромысел.

Как же работает VTEC? Примерно до 5500 об/мин мотор работает в штатном режиме, используя только систему VTC (то есть крутит фазовращатели). Средний кулачок как бы не замкнут с двумя другими по краям, он просто вращается в пустую. И вот при достижении высоких оборотов, ЭБУ дает приказание на включение системы VTEC, начинает закачиваться масло и специальный штифт выталкивается вперед, это позволяет замкнуть все три «кулачка» сразу, начинает работать самый высокий профиль – теперь именно он давит пару клапанов, на которые рассчитана группа. Таким образом, клапан опускается намного больше, что позволяет дополнительно наполнить цилиндры новой рабочей смесью и отвести больший объем «отработки».

Стоит отметить, что VTEC стоит и на впускном и выпускном валах, это дает реальное преимущество и прирост мощности на высоких оборотах. Прирост примерно в 5 – 7%, это очень хороший показатель.

Стоит отметить, хотя ХОНДА была первой, сейчас похожие системы используются на многих автомобилях, например Toyota (VVTL-i), Mitsubishi (MIVEC), Kia (CVVL). Иногда как например в моторах Kia G4NA, используется лифт клапанов только на одном распредвалу (здесь только на впускном).

НО и у этой конструкции есть свои недостатки, и самый главный это ступенчатое включение в работу, то есть едите до 5000 – 5500 и дальше чувствуете (пятой точкой) включение, иногда как толчок, то есть нет плавности, а хотелось бы!

Плавное включение или Fiat (MultiAir), BMW (Valvetronic), Nissan (VVEL), Toyota (Valvematic)

Хотите плавности пожалуйста, и тут первой в разработках была компания (барабанная дробь) – FIAT. Кто бы мог подумать, они первые создали систему MultiAir, она еще более сложная, но более точная.

«Плавная работа» здесь применена на впускных клапанах, причем распредвала здесь вообще нет. Он сохранился только на выпускной части, но он имеет воздействие и на впуск (наверное запутал, но постараюсь объяснить).

Система от FIAT

Принцип работы. Как я сказал, здесь есть один вал, и он руководит и впускными и выпускными клапанами. ОДНАКО если на «выпускные» он воздействует механически (то есть банально через кулачки), то вот на впускные воздействие передается через специальную электро-гидравлическую систему. На валу (для впуска) есть что-то типа «кулачков», которые нажимают не на сами клапана, а на поршни, а те передают приказания через электромагнитный клапан на рабочие гидроцилиндры открывать или закрывать. Таким образом, можно добиться нужного открытия в определенный период времени и оборотов. При малых оборотах, узкие фазы, при высоких – широкие, и клапан выдвигается на нужную высоту ведь здесь все управляется гидравликой или электрическими сигналами.

без вала

Это позволяет сделать плавное включение в зависимости от оборотов двигателя. Сейчас такие разработки есть также у многих производителей, таких как — BMW (Valvetronic), Nissan (VVEL), Toyota (Valvematic). Но и эти системы не идеальны до конца, что опять не так? Собственно здесь опять же есть привод ГРМ (который забирает на себя около 5% мощности), есть распредвал и дроссельная заслонка, это опять забирает много энергии, соответственно крадет КПД, вот бы от них отказаться.

FreeValve

Отказ полностью от валов, дросселя и привода ГРМ (цепь или ремень) выносят многие производители, но первыми сделали это Шведы в своем суперкаре Koenigsegg, который кстати развивает аж 1500 л.с.

Как это устроено? Вместо валов здесь находятся специальные электромагнитные актуаторы, в которых встроены пневматические пружины. ЭБУ контролирует каждый такой клапан и способна открывать и закрывать его очень быстро (до 100 раз в секунду) и на любое расстояние которое нужно. Это позволяет регулировать фазы на любое заданное значение! И ЭТО РЕАЛЬНО ОЧЕНЬ КРУТО.

freevalve

Испытания показали, что такой мотор до 30% мощнее и эффективнее чем аналоги с распределительной системой, а также он экономичен на эти же 30%. Плавность хода здесь на высоте.

Читайте так же:
Карбюратор пекар ваз 2107 регулировка смеси

Минусом пока является что такой мотор, шумный, такое количество электромагнитных клапанов создает щелканье при открытие, причем оно нарастает при повышении оборотов. Также стоимость агрегата пока очень высока, но если его запустить в серию цена может значительно упасть.

Что же вот мы с вами и рассмотрели основные виды фазовращателей и просто систем газораспределения без них. Кто не особо понял посмотрите видео версию, там я постараюсь рассказать все просто и на пальцах.

НА этом заканчиваю, думаю, моя статья была для вас полезна, подписывайтесь на наш сайт и канал YOUTUBE, искренне ваш АВТОБЛОГГЕР.

(70 голосов, средний: 4,69 из 5)

Неисправность фазорегулятора

Неисправности фазорегулятора могут заключаться в следующем: он начинает издавать неприятные трескающие звуки, замирает в одном из крайних положений, нарушается работа электромагнитного клапана фазорегулятора, формируется ошибка в памяти ЭБУ.

Неисправность фазорегулятора

С неисправным фазорегулятором хотя и можно ездить, но необходимо понимать, что двигатель будет работать не в оптимальном режиме. Это повлияет на расход топлива и динамические характеристики двигателя. В зависимости от возникшей проблемы с муфтой, клапаном или системой фазорегулятора в целом, будут отличаться симптомы неисправности и возможность их устранения.

Принцип действия фазорегулятора

Чтобы разобраться почему трещит фазорегулятор или клинит его клапан, имеет смысл разобраться в принципе действия всей системы. Это даст лучшее понимание поломок и дальнейших действий по их ремонту.

На различных оборотах двигатель работает не одинаково. Для холостых и низких оборотов характерны так называемые «узкие фазы», при которых скорость отвода выхлопных газов невелики. И наоборот, для больших оборотов характерны «широкие фазы», когда объем выпускаемых газов большой. Если на низких оборотах будут использоваться «широкие фазы», то отработанные газы будут смешиваться со вновь поступающими, что приведет к снижению мощности двигателя, и даже его остановке. А когда на высоких оборотах включаться «узкие фазы», то приведет к снижению мощности мотора и его динамике работы.

Существует несколько типов систем фазорегуляторов. VVT (Variable Valve Timing), разработана Volkswagen, CVVT — используется Kia и Hyindai, VVT-i — применяется Toyota и VTC — устанавливаются на движки Honda, VCP — фазорегуляторы Renault, Vanos / Double Vanos — система, используемая в BMW. Далее рассмотрим принцип действия фазорегулятора на примере автомобиля «Рено Меган 2» с 16-ти клапанным двигателем К4М, поскольку выход его из строя является «детской болезнью» этой машины и ее владельцы чаще всего сталкиваются с неработающим фазорегулятором.

Управление происходит через электромагнитный клапан, подача масла к которому регулируется электронными сигналами с дискретной частотой 0 или 250 Гц. Весь этот процесс контролируется электронным блоком управления на основании сигналов, поступающих от датчиков двигателя. Включение фазорегулятора происходит при возрастающей нагрузке на двигатель (значение оборотов от 1500 до 4300 оборотов в минуту) когда соблюдаются следующие условия:

  • исправные датчики положения коленчатого (ДПКВ) и распределительного валов (ДПРВ);
  • отсутствуют неисправности в системе впрыска топлива;
  • наблюдается пороговое значение впрыска фаз;
  • температура охлаждающей жидкости находится в пределах +10°…+120°С;
  • повышенная температура масла двигателя.

Возвращение фазорегулятора в исходное положение происходит когда обороты снижаются при тех же условиях, но с тем отличием, что рассчитано нулевое смещение фаз. В этом случае запорный плунжер блокирует механизм. Таким образом, «виновниками» неисправности фазорегулятора могут быть не только он сам, но и электромагнитный клапан, датчики двигателя, неисправности в моторе, сбои в работе ЭБУ.

Признаки неисправности фазорегулятора

О полном или частичном выходе фазорегулятора из строя можно судить по следующим признакам:

  • Увеличение шумности работы двигателя. Из района установки распределительного вала будут исходить повторяющиеся лязгающие звуки. Некоторые автолюбители говорят, что они похожи на работу дизельного мотора.
  • Нестабильная работа двигателя в одном из режимов. Мотор может хорошо держать холостые обороты, но плохо разгоняться и терять мощность. Или наоборот, нормально ездить, но «захлебываться» на холостых. На лицо общее снижение выходной мощности.
  • Повышенный расход топлива. Опять же, в каком-то режиме работы мотора. Желательно проверять расход топлива в динамике по бортовому компьютеру либо диагностическому прибору.
  • Повышение токсичности выхлопных газов. Обычно их количество становится больше, и они приобретают более резкий, чем ранее, топливный, запах.
  • Повышается расход моторного масла. Оно может начать активно выгорать (уменьшается его уровень в картере) либо терять свои эксплуатационные свойства.
  • Нестабильные обороты после запуска двигателя. Это обычно продолжается около 2…10 секунд. В это же время треск от фазорегулятора сильнее, а потом он немного стихает.
  • Формирование ошибки рассогласования коленчатого и распределительного валов или положения распредвала. У разных машин их код может отличаться. Например, у «Рено» ошибка с кодом DF080 прямо указывает на проблемы с «фазиком». У других машин зачастую возникает ошибка p0011 или p0016, указывающих на рассинхронизацию системы.

Обратите внимание, что кроме этого, при выходе фазорегулятора из строя может проявляться только часть указанных признаков или проявляются они на разных машинах по-разному.

Причины неисправности фазорегулятора

Неисправности делят непосредственно по фазорегулятору и по его управляющему клапану. Так, причинами неисправности фазорегулятора являются:

  • Износ поворотного механизма (лопатки/лопасти). В обычных условиях это происходит по естественным причинам, и менять фазорегуляторы рекомендуется через каждые 100…200 тысяч километров пробега. Ускорить износ может загрязненное либо некачественное масло.
  • Смещение либо рассогласование установленных значений поворотных углов фазорегулятора. Обычно это происходит из-за того, что поворотный механизм фазорегулятора в его корпусе превышает допустимые углы поворота по причине износа металла.

А вот причины поломки клапана vvt другие.

  • Выход из строя сальника клапана фазорегулятора. У автомобилей Рено Меган 2 клапан фазорегулятора установлен в углублении в передней части двигателя, где много грязи. Соответственно, если сальник теряет герметичность, то пыль и грязь извне смешивается с маслом и попадает в рабочую полость механизма. Как результат — заклинивание клапана и износ поворотного механизма самого регулятора.
  • Проблемы с электрической цепью клапана. Это может быть ее обрыв, повреждение контакта, повреждение изоляции, замыкание на корпус либо на провод питания, снижение или повышение сопротивления.
  • Попадание пластиковой стружки. На фазорегуляторах часто лопатки делаются из пластмассы. По мере их износа они меняют свою геометрию и выпадают из посадочного места. Вместе с маслом они попадают в клапан, распадаются и измельчаются. Это может привести либо к неполному ходу штока клапана, либо даже к полному его заклиниванию.
Читайте так же:
Регулировка сцепления уаз буханка 452

Также причины отказа фазорегулятора могут крыться в сбое работы других связанных элементов:

  • Некорректные сигналы от ДПКВ и/или ДПРВ. Это может быть связано как с проблемами с указанными датчиками, так и с тем, что фазорегулятор износился, из-за чего распределительный либо коленчатый вал находятся в положении, выходящим за допустимые границы в конкретный момент времени. В данном случае вместе с фазорегулятором нужно проверить датчик положения коленвала и проверить ДПРВ.
  • Проблемы в работе ЭБУ. В редких случаях в электронном блоке управления происходит программный сбой и даже при всех корректных данных он начинает выдавать ошибки, в том числе в отношении фазорегулятора.

Демонтаж и чистка фазорегулятора

Проверку работы фазика можно выполнить и без демонтажа. Но для выполнения проверки по износу фазорегулятора его необходимо снять и разобрать. Чтобы найти где он находится нужно ориентироваться по переднему краю распредвала. В зависимости от конструкции мотора демонтаж самого фазорегулятора будет отличаться. Однако в любом случае, через его кожух перекинут ремень ГРМ. Поэтому нужно обеспечить доступ к ремню, а сам ремень нужно снять.

Отсоединив клапан всегда проверяйте состояние фильтрующей сетки. Если она грязная ее нужно почистить (промыть очистителем). Чтобы почистить сетку нужно аккуратно раздвинуть ее в месте защелкивания и демонтировать с посадочного места. Сетку можно промыть в бензине либо другой чистящей жидкости при помощи зубной щетки или другого нежесткого предмета.

Сам клапан фазорегулятора также можно очистить от масла и нагара (как снаружи, так и внутри, если это позволяет его конструкция) используя карбклинер. Если клапан чистый, то можно переходить к его проверке.

Как проверить фазорегулятор

Существует один простой метод, как можно проверить, работает фазорегулятор в двигателе или нет. Для этого необходимы лишь два тонких провода длиной около полутора метров. Суть проверки заключается в следующем:

  • Снять штекер с разъема клапана подачи масла в фазорегулятор и подключить туда подготовленные проводки.
  • Второй конец одного из проводов нужно подсоединить на одну из клемм аккумулятора (полярность в данном случае неважна).
  • Второй конец второго провода оставить пока в подвешенном состоянии.
  • Запустить двигатель на холодную и оставить работать на холостых оборотах. Важно, чтобы масло в движке было остывшим!
  • Подключить конец второго провода ко второй клемме аккумулятора.
  • Если двигатель после этого начинает «задыхаться», значит, фазорегулятор работает, в противном случае — нет!

Электромагнитный клапан фазорегулятора необходимо проверять по следующему алгоритму:

  • Выбрав на тестере режим измерение сопротивления, замерьте его между выводами клапана. Если ориентироваться на данные руководства Меган 2, то при температуре воздуха +20°С оно должно находиться в пределах 6,7…7,7 Ом.
  • Если сопротивление ниже — значит, имеет место замыкание, если больше — обрыв. В любом случае клапана не ремонтируют, а меняют на новые.

Измерение сопротивления можно выполнить и без демонтажа, однако нужно проверить и механическую составляющую клапана. Для этого понадобится:

  • От источника питания 12 Вольт (АКБ авто) подайте напряжение дополнительными проводками на электрический разъем клапана.
  • Если клапан исправен и чист, то при этом его поршень выдвинется вниз. Если напряжение убрать — шток должен вернуться в исходное положение.
  • Далее нужно проверить зазор в крайних выдвинутых положениях. Он должен быть не более 0,8 мм (можно воспользоваться металлическим щупом для проверки зазоров клапанов). Если он меньше, то клапан нужно прочистить по описанному выше алгоритму.После выполнения чистки электрическую и механическую проверки следует, а затем принимать решение о замене. повторить.

Ошибка фазорегулятора

В случае, если на Рено Меган 2 в блоке управления сформировалась ошибка DF080 (цепь изменения характеристики распределительного вала, обрыв цепи), то нужно в первую очередь проверить клапан по приведенному выше алгоритму. Если он работает нормально, то в таком случае необходимо «прозвонить» по цепи провода от фишки клапана до электронного блока управления.

Чаще всего проблемы возникают в двух местах. Первое — в жгуте проводов, которые идут с самого двигателя на блок управления двигателем. Второе — в самом разъеме. Если проводка целая, то смотрите разъем. Со временем пины на них разжимаются. Чтобы их поджать нужно выполнить следующие действия:

  • снять пластиковый держатель с разъема (сдернуть вверх);
  • после этого появится доступ к внутренним контактам;
  • аналогично нужно демонтировать заднюю часть корпуса держателя;
  • после этого поочередно достать через заднюю часть один и второй сигнальный провод (действовать лучше по очереди, чтобы не перепутать распиновку);
  • на освободившейся клемме необходимо при помощи какого-то острого предмета нужно поджать клеммы;
  • собрать все в исходное положение.

Отключение фазорегулятора

Многих автолюбителей волнует вопрос — можно ли ездить с неисправным фазорегулятором? Ответ — да, можно, но нужно понимать последствия. Если же вы по каким-то причинам все же решите отключить фазорегулятор, то сделать это можно так (рассматривается на том же Рено Меган 2):

  • отсоединить штекер от разъема клапана подачи масла на фазорегулятор;
  • в результате возникнет ошибка DF080, а возможно и дополнительные при наличии сопутствующих поломок;
  • чтобы избавиться от ошибки и «обмануть» блок управления, необходимо между двумя выводами на штекере вставить электрический резистор сопротивлением около 7 Ом (как указывалось выше — 6,7…7,7 Ом для теплого времени года);
  • сбросить возникшую в блоке управления ошибку программно либо отсоединив на несколько секунд минусовую клемму аккумулятора;
  • снятый штекер надежно закрепить в подкапотном пространстве, чтобы он не оплавился и не мешал другим деталям.
Читайте так же:
Регулировка крана газовой плиты своими руками

Заключение

Автопроизводители рекомендуют менять фазорегуляторы через каждые 100…200 тысяч километров пробега. Если он застучал раньше — в первую очередь нужно проверить его клапан, так как это проще. Глушить или не глушить «фазик» — решать автовладельцу, поскольку это приводит к негативным последствиям. Демонтаж и замена самого фазорегулятора — это трудоемкое занятие для всех современных машин. Поэтому выполнять такую процедуру можно только, если у вас есть опыт работ и соответствующие инструменты. Но лучше обратиться за помощью в автосервис.

Добро пожаловать
на VAZ.EE+ Extended Edition

С мая 2013 года наш портал расширил тематические разделы форума по обмену опытом: добавлены подфорумы Американцы, Корейцы, Немцы, Французы, Японцы, в связи с увеличением автопарков наших посетителей.

Помимо изменения стиля, наш Чат, Почта, Развлекательные и фото/видео разделы, Литература стали встроенными и не трубеют отдельной регистрации. Кроме этого, есть и другие полезные и приятные новшевства с которыми Вы все можете ознакомиться при посещении портала.

С вопросами и предложениями можете обращаться к администрации в специальном разделе форума или через форму обратной связи.

Изменение фаз газораспределения на 8 кл. ДВС

Автор темы Dima1982, 4.3.2008, 13:38

  • 3 страниц
  • Авторизуйтесь для ответа в теме

#1 Dima1982

  • Offline
  • Карточка
  • ЛС

Сообщение добавлено 4.3.2008, 13:38

ОБОСНОВАНИЕ ВОЗМОЖНОСТИ РЕАЛИЗАЦИИ
РЕГУЛИРОВКИ ФАЗ ГАЗОРАСПРЕДЕЛЕНИЯ

Для обеспечения оптимальных мощностных параметров двигателя, его высокой экономичности и снижения токсичности отработавших газов ведущими автопроизводителями мира все чаще применяется регулировка фаз газораспределения (ФГР). В настоящее время используют два варианта регулировок: сдвиг фаз и масштабирование (обычно с изменением подъема клапана).

Сдвиг фаз реализуется проще, но менее эффективен в плане увеличения мощности, а так же требует двух распределительных валов — поворотом вала, управляющего впускными клапанами, собственно и выполняется уменьшение или увеличение перекрытия клапанов на разных оборотах двигателя. Однако положительная добавка мощности от увеличения перекрытия клапанов на высоких оборотах двигателя частично компенсируется отрицательным фактором — снижением дозарядки топливно-воздушной смесью (ТВС) в результате уменьшения угла закрытия клапана после прохода НМТ.

Регулировка ФГР масштабированием диаграммы подъема кулачка в серийном производстве реализовано фирмой Honda в виде попеременно работающих кулачков с различной разверткой: на малых оборотах — с "узкими" фазами, на высоких (порядка 5000 об/мин) — с "широкими". Переключение происходит под управлением давления масла в системе смазки с помощью гидроцилиндров. Таким образом варьируются не только ФГР, но и высота подъема кулачка. Сложность изготовления, настройки и эксплуатации подобных устройств не дали им широкого распространения, хотя они и позволяют повысить удельную литровую мощность до 100 л.с./дм3 без наддува.

Разрабатываемые вазовскими специалистами конструкции, копирующими хондовскую, несовершенны по массово-кинематическим параметрам, сложны с технологической точки зрения и требуют перехода на новую головку блока, что ставит под сомнение воплощение самой идеи в металле.

На самарском предприятии "Гидроавтоматика" на основе патента РФ №2133348 во втором квартале 2000 года будет изготовлена опытная партия устройств для регулировки ФГР, полностью унифицированных с гидроопорами 21214-1007160 и не требующих никаких других переделок в двигателе, кроме установки распредвала с "широкими" ФГР. В условиях конвейерной сборки это повлечет за собой только перенастройку шлифовального станка для распредвалов.

Регулировка фаз данными устройствами в отличие от "ступенчатых" хондовских осуществляется плавно во всем диапазоне вращения коленчатого вала двигателя, благодаря чему обеспечиваются оптимальные ФГР для всех режимов работы двигателя.

Изменение ФГР происходит за счет податливости штока устройства (гидроопоры): на малых оборотах утопание штока составляет 2 — 3 мм, на высоких (около 4000 об/мин) шток стоит жестко, как у обычной гидроопоры, т.е. утопание равно нулю. Соответствующим образом (исходя из соотношения частей рокера, разделенных линией соприкосновения с кулачком) и почти линейно от оборотов двигателя изменяется высота подъема и углы начала и конца открытого состояния клапана (см. рис.1). Диапазон регулировки — до 60° с каждой стороны развертки по углу поворота коленчатого вала двигателя! Причем и у выпускного клапана тоже. В результате перекрытие клапанов варьируется в пределах 120°! Таким образом параметры наполнения цилиндров ТВС двухклапанных двигателей приближаются и даже превосходят аналоги четырехклапанных! Возрастают мощность и крутящий момент (см. рис.3), особенно в диапазоне высоких оборотов, без ухудшения экономичности и экологичности двигателя.

Единственным недостатком подобной схемы регулирования ФГР является шум на малых оборотах вращения коленвала двигателя от достаточно высокой скорости посадки тарелки клапана на седло (см.рис.2). Однако вся остальная кинематическая цепочка (торец клапана-рокер-кулачок-шток гидроопоры) работает в беззазорном состоянии, поэтому ресурс данных деталей не должен измениться, а излишний шум присутствует только на малых оборотах и в сумме не превышает допустимый предел. Схожие недостатки есть и у обычных гидроопор, что уравнивает их позиции.

Наличие приглушенного стука клапанов можно снизить раздельным приводом клапанов (т.е. выпускные — обычными гидроопорами), дополнительной звукоизоляцией, но он же и предотвратит повторную попытку запуска двигателя, предупредит пешеходов о приближении автомобиля, будет способствовать удалению нагара с тарелок клапанов и приработки их поверхностей и седел клапанов.

Что достигают применением устройства для изменения фаз газораспределения при изменении режима работы двигателя?

Главными задачами системы изменения фаз газораспределения являются:

— улучшение качества работы двигателя на холостом ходу;

— снижение расхода топлива;

— оптимизация крутящего момента в области средних и высоких частот вращения коленчатого вала;

— увеличение внутренней рециркуляции отработавших газов с сопутствующим ей снижением температуры газов при сгорании и уменьшением выброса оксидов азота;

— увеличение мощности в области высоких частот вращения коленчатого вала.

19. Что дает опережение открытия выпускного клапана?

Выпускной кулачок должен открывать клапан достаточно рано, чтобы цилиндр успел очиститься от продуктов сгорания. При позднем открытии оставшиеся в цилиндре несгоревшие газы будут смешиваться с поступающей свежей смесью; раннее открытие может существенно снизить мощность рабочего хода, так как давление, толкающее поршень вниз, будет сбрасываться через выпускной канал. Тоже и при закрытии: если закрыть клапан слишком рано, то отработанные газы не успеют выйти, а если слишком поздно, то входящая порция смеси будет вытолкнута в выхлоп вместе со сгоревшими газами. Такое может происходить потому, что в момент прохода поршня через ВМТ при переходе от такта выпуска к такту впуска впускной и выпускной клапаны открыты одновременно. Это называется «перекрытием клапанов». Этот «перелив» из впускного канала в выпускной может дать двигателю несколько преимуществ. Во-первых, выхлопные газы, выходящие из цилиндра могут быть использованы для создания вакуума — нечто подобное происходит при выдергивании пробки из бутылки. Это будет помогать опускающемуся поршню втягивать в цилиндр свежую смесь. Во-вторых, выхлопную систему можно настроить так, что свежая смесь, переливающаяся в выпускной канал, будут втягиваться обратно в камеру сгорания перед самым закрытием выпускного клапана. Решающим обстоятельством является здесь не продолжительность перекрытия (выражаемая в градусах поворота коленчатого вала), а то, насколько высоко поднимаются клапаны в верхней мертвой точке. При стандартном распредвале высота подъема обоих клапанов в верхней мертвой точке может доходить до 0,76 мм, в то время, как для гоночных автомобилей эта величина достигает 5 мм. В целом, чем больше подъем клапанов при перекрытии, тем при больших оборотах двигатель достигает максимальной мощности, и тем хуже распределение мощности. Здесь уже возникает проблема зазора между клапанами и поршнем. При чрезмерно больших кулачках, дающих высокий подъем клапанов в фазе перекрытия, приходится делать в поршнях специальные углубления — «карманы», чтобы исключить столкновение поршня с клапанами к верхней мертвой точке.

Читайте так же:
Как отрегулировать расход топлива на газовом оборудовании

В чем назначение перекрытие фаз?

Когда впускной клапан открывается раньше, а выпускной клапан закрывается поздно, имеется период времени, когда оба клапана открыты. Этот период перекрытия клапанов имеет место, когда поршень находится около ВМТ. Открывание обоихкла-панов одновременно может не показаться хорошей идеей, однако, такая технология сжимает движущуюся массу потока выхлопных газов как своеобразный "пылесос", чтобы вытянуть оставшиеся газы. Фактически, этот эффект пылесоса такой сильный, что он также помогает начать впуск потока. Этот более ранний впускной поток, вызванный энергией выхлопных газов, называется продувкой, и он улучшает наполнение цилиндра и увеличивает мощность, особенно на высоких оборотах. Тогда как чрезмерное перекрытие клапанов уменьшает крутящий момент на низких оборотах, потери уменьшаются, когда продолжительность перекрытия настраивается в соответствии с применением — примерно от 400 для обычного распредвала и примерно до 850 для специального профиля.Распределительные валы с короткой продолжительностью тактов, разработанные для работы при низких оборотах двигателя, почти всегда имеют короткие периоды перекрытия клапанов. Эти распределительные валы обеспечивают хорошие значения мощности двигателя на низких оборотах, так как фазы работы клапанов не слишком удалены от фаз ВМТ/НМТ.

Какие силы действуют вдоль оси распределительного вала?

Преимущества и недостатки косозубых шестерен в приводе распределительного вала

-практически неограниченная передаваемая мощность

-малые габариты и вес

-стабильное передаточное отношение

Высокий КПД, который составляет в среднем 0,97 – 0,98

шум в работе на высоких скоростях (может быть снижен при применении зубьев соответствующей геометрической формы и улучшении качества обработки профилей зубьев)

Преимущественное распространение получили передачи с зубьями эвольвентного профиля, которые изготавливаются массовым методом обкатки на зубофрезерных или зубодолбежных станках. Достоинство эвольвентного зацепления состоит в том, что оно мало чувствительно к колебанию межцентрового расстояния

При высоких угловых скоростях вращения рекомендуется применять косозубые шестерни, в которых зубья входят о зацепление плавно, что и обеспечивает относительно бесшумную работу.

Недостатком косозубых шестерен является наличие осевых усилий, которые дополнительно нагружают подшипники. Этот недостаток можно устранить, применив сдвоенные шестерни с равнонаправленными спиралями зубьев или шевронные шестерни.

Шевронные шестерни, ввиду высокой стоимости и трудности изготовления применяются сравнительно редко – лишь для уникальных передач большой мощности.

При малых угловых скоростях вращения применяются конические прямозубые шестерни, при больших – шестерни с круговым зубом, которые в настоящее время заменили конические косозубые шестерни, применяемые ранее.

Конические гипоидные шестерни тоже имеют круговой зуб, однако оси колес в них смещены, что создает особенно плавную и бесшумную работу. Передаточное отнесение в зубчатых парах колеблется в широких пределах, однако обычно оно равно 3 – 5

Преимущества и недостатки цепной и ременной передач в приводе распределительного вала

Преимуществами являются возможность осуществлять передачу на значительные расстояния, эластичность привода, смягчающая колебания и нагрузки и предохраняющая от значительных перегрузок (за счет проскальзывания), плавность хода и бесшумность работы.

К недостаткам относятся меньшая компактность, непостоянство передаточного отношения (из-за скольжения ремня на шкивах), большое давление на валы и подшипники, немного меньший коэффициент полезного действия.

Способы осевой фиксации распределительного вала

Фиксация вала в осевом направлении осуществляется специальными торцевыми ограничителями. У большинства двигателей осевые перемещения ограничиваются упорным фланцем, укрепленным болтами к блок-картеру. Распорное кольцо 6, зажатое между ступицей шестерни и передней опорной шейкой, толще

упорного фланца, что обеспечивает необходимый осевой зазор между торцом шейки и ступицей шестерни.

С какой целью на деталях привода распределительного вала ставят метки?

метка на шкиве коленчатого вала совмещена с меткой на крышке масляного насоса). При этом метка 8 должна совпадать с меткой на задней крышке зубчатого ремня, а метка на маховике должна находиться против среднего деления шкалы на картере сцепления.

Если метки не совпадают, то ослабляют ремень натяжным роликом, снимают со шкива распределительного вала, корректируют положение шкива, снова надевают ремень на шкив и слегка натягивают натяжным роликом. Опять проверяют совпадение установочных меток, провернув коленчатый вал на два оборота по часовой стрелке.

Назначение теплового зазора в приводе клапана, почему его необходимо регулировать в процессе эксплуатации двигателя?

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector