Nara-auto.ru

Автосервис NARA
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Cпособы регулирования скорости вращения асинхронного двигателя

Cпособы регулирования скорости вращения асинхронного двигателя

Асинхронные двигатели переменного тока являются самыми применяемыми электродвигателями абсолютно во всех хозяйственных сферах. В их преимуществах отмечается конструктивная простота и небольшая цена. При этом немаловажное значение имеет регулирование скорости асинхронного двигателя. Существующие способы показаны ниже.

Согласно структурной схеме скоростью электродвигателя можно управлять в двух направлениях, то есть изменением величин:

  1. скорость электромагнитного поля статора;
  2. скольжение двигателя.

1

Первый вариант коррекции, используемый для моделей с короткозамкнутым ротором, осуществляется за счет изменения:

  • частоты,
  • количества полюсных пар,
  • напряжения.

В основе второго варианта, применяемого для модификации с фазным ротором, лежат:

  • изменение напряжения питания;
  • присоединение элемента сопротивления в цепь ротора;
  • использование вентильного каскада;
  • применение двойного питания.

Вследствие развития силовой преобразовательной техники на текущий момент в широком масштабе изготовляются всевозможные виды частотников, что определило активное применение частотно-регулируемого привода. Рассмотрим наиболее распространённые методы.

Частотное регулирование

Всего десять лет назад в торговой сети регуляторов частоты вращения скорости ЭД было небольшое количество. Причиной тому служило то, что тогда ещё не производились дешёвые силовые высоковольтные транзисторы и модули.

На сегодня частотное преобразование – самый распространённый способ регулирования скорости двигателей. Трёхфазные преобразователи частоты создаются для управления 3-фазными электродвигателями.

Трехфазный преобразователь частоты - схема

Однофазные же двигатели управляются:

  • специальными однофазными преобразователями частоты;
  • 3-фазными преобразователями частоты с устранением конденсатора.

Схемы регуляторов оборотов асинхронного двигателя

Для двигателей повседневного предназначения легко можно выполнить необходимые расчеты, и своими руками произвести сборку устройства на полупроводниковой микросхеме. Пример схемы регулятора электродвигателя приведён ниже. Такая схема позволяет добиться контроля параметров приводной системы, затрат на техническое обслуживание, снижения потребления электричества наполовину.

Схема регулятора скорости вращения электродвигателя

Принципиальная схема регулятора оборотов вращения ЭД для повседневных нужд значительно упрощается, если применить так называемый симистор.

4

Обороты вращения ЭД регулируются с помощью потенциометра, определяющего фазу входного импульсного сигнала, открывающего симистор. На изображении видно, что в качестве ключей применяются два тиристора, подключённых встречно-параллельно. Тиристорный регулятор оборотов ЭД 220 В достаточно часто применяется для регулирования такой нагрузки, как диммеры, вентиляторы и нагревательная техника. От оборотов вращения асинхронного ЭД зависят технические показатели и эффективность работы двигательного оборудования.

Заключение

На технорынке сегодня предлагаются в большом ассортименте регуляторы и частотные преобразователи для асинхронных электродвигателей переменного тока.

Управление способом варьирования частоты на данный момент – самый оптимальный способ, т. к. он позволяет плавно регулировать скорость асинхронного ЭД в широчайшем диапазоне, без значительных потерь и снижения перегрузочных способностей.

Тем не менее, на основе расчёта, можно самостоятельно собрать простое и эффективное устройство с регулированием оборотов вращения однофазных электродвигателей с помощью тиристоров.

Частотно-регулируемый привод

Частотно-регулируемый привод (частотно-управляемый привод, ЧУП, Variable Frequency Drive, VFD) — система управления частотой вращения ротора асинхронного (или синхронного) электродвигателя. Состоит из собственно электродвигателя и частотного преобразователя.

Частотный преобразователь (преобразователь частоты) — это устройство, состоящее из выпрямителя (моста постоянного тока), преобразующего переменный ток промышленной частоты в постоянный, и инвертора (преобразователя) (чаще с ШИМ), преобразующего постоянный ток в переменный требуемых частоты, амплитуды и формы. Выходные тиристоры (GTO) или транзисторы IGBT или MOSFET обеспечивают необходимый ток для питания электродвигателя. Для исключения перегрузки преобразователя при большой длине фидера между преобразователем и фидером ставят дроссели, а для уменьшения электромагнитных помех — EMC-фильтр.

При скалярном управлении формируются гармонические токи фаз двигателя. Векторное управление — метод управления синхронными и асинхронными двигателями, не только формирующий гармонические токи (напряжения) фаз, но и обеспечивающий управление магнитным потоком ротора (моментом на валу двигателя).

Читайте так же:
Разметка звездочки распредвала для регулировки клапанов

Содержание

Принципы построения частотного преобразователя [ править | править код ]

С непосредственной связью [ править | править код ]

В преобразователях с непосредственной связью частотный преобразователь представляет собой управляемый выпрямитель. Система управления поочерёдно отпирает группы тиристоров и подключает статорные обмотки двигателя к питающей сети. Таким образом, выходное напряжение преобразователя формируется из «вырезанных» участков синусоид входного напряжения. Частота выходного напряжения не может быть равна или выше частоты питающей сети. Она находится в диапазоне от 0 до 30 Гц. Как следствие — малый диапазон управления частотой вращения двигателя (не более 1 : 10). Это ограничение не позволяет применять такие преобразователи в современных частотно регулируемых приводах с широким диапазоном регулирования технологических параметров.

Использование незапираемых тиристоров требует относительно сложных систем управления, которые увеличивают стоимость преобразователя. «Резаная» синусоида на выходе преобразователя с непосредственной связью является источником высших гармоник, которые вызывают дополнительные потери в электрическом двигателе, перегрев электрической машины, снижение момента, очень сильные помехи в питающей сети. Применение компенсирующих устройств приводит к повышению стоимости, массы, габаритов, понижению КПД системы в целом.

С явно выраженным промежуточным звеном постоянного тока [ править | править код ]

Наиболее широкое применение в современных частотно-регулируемых приводах находят преобразователи с явно выраженным звеном постоянного тока. В преобразователях этого класса используется двойное преобразование электрической энергии: входное синусоидальное напряжение выпрямляется в выпрямителе, фильтруется фильтром, а затем вновь преобразуется инвертором в переменное напряжение изменяемой частоты и амплитуды. Двойное преобразование энергии приводит к снижению КПД и к некоторому ухудшению массогабаритных показателей по отношению к преобразователям с непосредственной связью.

Применение ЧРП [ править | править код ]

ЧРП применяются в:

  • судовом электроприводе большой мощности (синхронная работа клетей)
  • высокооборотном приводе вакуумных турбомолекулярных насосов (до 100 000 об/мин.)
  • конвейерных системах
  • резательных автоматах
  • станках с ЧПУ — синхронизация движения сразу нескольких осей (до 32 — например в полиграфическом или упаковывающем оборудовании) (сервоприводы)
  • автоматически открывающихся дверях , насосах, вентиляторах, компрессорах
  • бытовых инверторных сплит-системах
  • на электротранспорте: электровозах, электропоездах, трамваях и троллейбусах
    • В транспортном моделизме подвидом ЧРП является электронный регулятор хода

    Наибольший экономический эффект даёт применение ЧРП в системах вентиляции, кондиционирования и водоснабжения, где применение ЧРП стало фактически стандартом. [ источник не указан 3617 дней ]

    Преимущества применения ЧРП [ править | править код ]

    • Высокая точность регулирования
    • Широкий диапазон регулирования асинхронного двигателя
    • Экономия электроэнергии в случае переменной нагрузки (то есть работы эл. двигателя с неполной нагрузкой)
    • Равный максимальному пусковой момент
    • Возможность удалённой диагностики привода по промышленной сети
    • Распознавание выпадения фазы для входной и выходной цепей
    • Учёт моточасов
    • Повышенный ресурс оборудования
    • Уменьшение гидравлического сопротивления трубопровода из-за отсутствия регулирующего клапана
    • Плавный пуск двигателя, что значительно уменьшает его износ
    • ЧРП как правило содержит в себе ПИД-регулятор и может подключаться напрямую к датчику регулируемой величины (например, давления).
    • Управляемое торможение и автоматический перезапуск при пропадании сетевого напряжения
    • Подхват вращающегося электродвигателя
    • Стабилизация скорости вращения при изменении нагрузки
    • Значительное снижение акустического шума электродвигателя, (при использовании функции «Мягкая ШИМ»)
    • Дополнительная экономия электроэнергии от оптимизации возбуждения эл. двигателя
    • Позволяют заменить собой автоматический выключатель

    Недостатки применения ЧРП [ править | править код ]

    • Большинство моделей ЧРП являются источником помех
    • Сравнительно высокая стоимость для ЧРП большой мощности (окупаемость минимум 1-2 года)
    • Старение конденсаторов главной цепи

    Применение преобразователей частоты на насосных станциях [ править | править код ]

    Классический метод управления подачей насосных установок предполагает дросселирование напорных линий и регулирование количества работающих агрегатов по какому-либо техническому параметру (например, давлению в трубопроводе). Насосные агрегаты в этом случае выбираются исходя из неких расчётных характеристик (как правило, с запасом по производительности) и постоянно функционируют с постоянной частотой вращения, без учёта изменяющихся расходов, вызванных переменным водопотреблением. При минимальном расходе насосы продолжают работу с постоянной частотой вращения. Так, к примеру, происходит в ночное время суток, когда потребление воды резко падает. Основной экономический эффект применения частотно-регулируемых приводов достигается не за счет экономии электроэнергии, а благодаря существенному уменьшению расходов на ремонт водопроводных сетей. [ источник не указан 3617 дней ]

    Появление регулируемого электропривода позволило поддерживать постоянное давление непосредственно у потребителя. Широкое применение в мировой практике получил частотно регулируемый электропривод с асинхронным электродвигателем общепромышленного назначения. В результате адаптации общепромышленных асинхронных двигателей к их условиям эксплуатации в управляемых электроприводах создаются специальные регулируемые асинхронные двигатели с более высокими энергетическими и массогабаритностоимостными показателями по сравнению с неадаптированными. Частотное регулирование скорости вращения вала асинхронного двигателя осуществляется с помощью электронного устройства, которое принято называть частотным преобразователем. Вышеуказанный эффект достигается путём изменения частоты и амплитуды трёхфазного напряжения, поступающего на электродвигатель. Таким образом, меняя параметры питающего напряжения (частотное управление), можно делать скорость вращения двигателя как ниже, так и выше номинальной. Во второй зоне (частота выше номинальной) максимальный момент на валу обратно пропорционален скорости вращения.

    Метод преобразования частоты основывается на следующем принципе. Как правило, частота промышленной сети составляет 50 Гц. Для примера возьмём насос с двухполюсным электродвигателем. С учётом скольжения скорость вращения двигателя составляет около 2800 (зависит от мощности) оборотов в минуту и даёт на выходе насосного агрегата номинальный напор и производительность (так как это его номинальные параметры, согласно паспорту). Если с помощью частотного преобразователя понизить частоту и амплитуду подаваемого на него переменного напряжения, то соответственно понизятся скорость вращения двигателя, и, следовательно, изменится производительность насосного агрегата. Информация о давлении в сети поступает в блок частотного преобразователя от специального датчика давления, установленного у потребителя, на основании этих данных преобразователь соответствующим образом меняет частоту, подаваемую на двигатель.

    Современный преобразователь частоты имеет компактное исполнение, пыле- и влагозащищённый корпус, удобный интерфейс, что позволяет применять его в самых сложных условиях и проблемных средах. Диапазон мощности весьма широк и составляет от 0,18 до 630 кВт и более при стандартном питании 220/380 В и 50-60 Гц. Практика показывает, что применение частотных преобразователей на насосных станциях позволяет:

    • экономить электроэнергию (при существенных изменениях расхода), регулируя мощность электропривода в зависимости от реального водопотребления (эффект экономии 20 %);
    • снизить расход воды, за счёт сокращения утечек при превышении давления в магистрали, когда расход водопотребления в действительности мал (в среднем на 5 %);
    • уменьшить расходы (основной экономический эффект) на аварийные ремонты оборудования (всей инфраструктуры подачи воды за счет резкого уменьшения числа аварийных ситуаций, вызванных в частности гидравлическим ударом, который нередко случается в случае использования нерегулируемого электропривода (доказано, что ресурс службы оборудования повышается минимум в 1,5 раза);
    • достичь определённой экономии тепла в системах горячего водоснабжения за счёт снижения потерь воды, несущей тепло;
    • увеличить напор выше обычного в случае необходимости;
    • комплексно автоматизировать систему водоснабжения, тем самым снижая фонд заработной платы обслуживающего и дежурного персонала, и исключить влияние «человеческого фактора» на работу системы, что тоже немаловажно.

    По имеющимся данным срок окупаемости проекта по внедрению преобразователей частоты составляет от 3 месяцев до 2 лет.

    Система позиционирования с помощью ЧРП [ править | править код ]

    С помощью современных ЧРП можно осуществлять контроль положения таких механизмов как высокоточные обрабатывающие станки, сборочные столы, конвейерные системы, поворотные столы, складском оборудовании. Таким образом, становятся не нужны шаговые двигатели и дорогие сервоприводы с дополнительным контроллером. Весь функционал позиционирования конфигурируется в настройках ЧРП. Самые основные возможности позиционирования это: переход по заданным позициям, поворот на заданный угол, остановка в заданном положении и блокировка вращения. При этом в отличие от маломощных шаговых двигателей и сервоприводов появляется возможность позиционирования действительно крупными механизмами с двигателями большой мощности до 315 кВт.

    Потери энергии при торможении двигателя [ править | править код ]

    Во многих установках на регулируемый электропривод возлагаются задачи не только плавного регулирования момента и скорости вращения электродвигателя, но и задачи замедления и торможения элементов установки. Классическим решением такой задачи является система привода с асинхронным двигателем с преобразователем частоты, оснащённым тормозным переключателем с тормозным резистором.

    При этом в режиме замедления/торможения электродвигатель работает как генератор, преобразуя механическую энергию в электрическую, которая в итоге рассеивается на тормозном резисторе. Типичными установками, в которых циклы разгона чередуются с циклами замедления являются тяговый привод электротранспорта, подъёмники, лифты, центрифуги, намоточные машины и т. п. Функция электрического торможения вначале появилась на приводе постоянного тока (например, троллейбус). В конце XX века появились преобразователи частоты со встроенным рекуператором, которые позволяют возвращать энергию, полученную от двигателя, работающего в режиме торможения, обратно в сеть. В этом случае, установка начинает «приносить деньги» фактически сразу после ввода в эксплуатацию.

    Зависимость рабочих характеристик насоса от частоты вращения

    Частота вращения и зависимость рабочих характеристик насоса от частоты вращения

    Частота вращения насоса представляет собой число оборотов вала насоса в единицу времени, обозначается литерой n и измеряется в оборотах в минуту (об/мин). Частота вращения насосов, приводимых в действие индукционными двигателями с частотой питающего напряжения 50Гц, составляет 2750 — 2950 оборотов в минуту для 2-х полюсного двигателя и 1375 — 1475 оборотов в минуту для 4-х полюсного двигателя. Другая частота вращения вала двигателя также допускается для работы насосного оборудования при соблюдении и в пределах расчетных ограничений.

    Из курса электротехники общеизвестно, что частота вращения магнитного поля в электродвигателе пропорциональна напряжению питающей цепи. При частоте напряжения в сети 50 Гц синхронная частота n1 вращения магнитного поля составляет 3000 оборотов в минуту. Так как насосы приводятся в действие в подавляющем большинстве случаев асинхронными двигателями частота вращения вала асинхронного двигателя всегда будет ниже синхронной частоты вращения магнитного поля с учетом величины скольжения. Вращение ротора асинхронного двигателя связано формулой с числом пар полюсов, скольжением и частотой питающего напряжения:

    Формула показывает, что для изменения частоты вращения вала асинхронного двигателя достаточно внести изменения в количество пар полюсов (p), скольжение ротора (s) или изменить частоту питающего напряжения (f1).

    Регулирование оборотов электродвигателя путем изменения числа пар полюсов позволяет получить только ступенчатое изменение скорости вращения, что часто оказывается неприемлемым для обеспечения требуемых параметров работы электронасоса. Исключение составляет ряд циркуляционных насосов, допускающих ступенчатое регулирование. Для асинхронных двигателей насосов с короткозамкнутым ротором регулирование числа оборотов двигателя изменением скольжения не применяется. Изменение частоты питающего напряжения — наиболее приемлемый, эффективный и совершенный способ регулирования, позволяющий обеспечить бесступенчатое плавное изменение гидравлических, электрических и механических характеристик электронасоса. Но на сегодняшний день этот способ регулирования требует применения дополнительного оборудования управления — преобразователя частоты асинхронного двигателя.

    В отсутствии влияния кавитации на работу насоса изменение частоты вращения электродвигателя будет сопровождаться изменением характеристик насоса в соответствии с законами подобия:

    1. Производительность Q пропорциональна отношению частоты вращения:

    2. Манометрический напор H пропорционален отношению частоты вращения в квадрате:

    3. Потребляемая мощность N пропорциональна отношению частоты вращения в кубе:

    Как видно из формул подобия незначительное изменение частоты вращения вала сопровождается значительными изменениями в потреблении электроэнергии. Например, центробежный насос, работающий с питанием от сети 50 Гц, со скоростью оборотов двигателя 2950 об/мин, при уменьшении частоты в сети до 40 Гц, снизит число оборотов, соответственно, до 2360 об/мин и производительность на 20%. При этом в соответствии с законами подобия потребление энергии сократится на 50%.

    Насос и его двигатель. Насос-двигатель

    Насос и его двигатель. Насос-двигатель

    Мы каждый день узнаем о насоса что-нибудь новенькое, такое, о чем мы раньше, по многим причинам, и не задумывались. У нас есть насос, он прекрасно качает воду из источника, которой хватает на полив сада-огорода и пользование ею всеми членами семьи и на работу всей бытовой техники. Зачем нам знать еще больше об этом удивительном агрегате?

    123.png

    Мы даже знаем сейчас, что каждый, в принципе, бытовой насос, в зависимости от его конструкции, можно использовать, как в качестве перекачивающего устройства, придав ему механическую энергию внешнего привода, так и в качестве двигателя, через который можно получить дополнительную энергию. Например, раскручивая ротор электродвигателя насоса струей поступающей жидкости, можно, при некотором изменении конструкции, получить источник электроэнергии в доме.

    Если взять более простые конструкции, то можно привести пример водяной мельницы, где двигателем и своеобразным механическим насосом можно рассматривать ее водное колесо. Многие, если не сказать, большинство гидронасосов имею возможность обратного применения.

    Но сейчас речь пойдет совсем о другом. Мы поговорим о стандартном применении гидронасосов и источниках энергии для них, которые применяются в бытовых и промышленных агрегатах перекачки воды. Мы будем говорить о самом выгодном виде механических двигателей для насосов – электродвигателях, которые имеют самое широкое распространение в насосах, как бытовых, так и во всех отраслях промышленности.

    Асинхронный электродвигатель. Плюсы и минусы применения. Конструкции типов

    Положительные стороны от применения электродвигателей в работе насосов видны с первого раза: это частые включения (повторные пуски) двигателей в работу в зависимости от водных параметров в магистрали, малое энергопотребление, простота конструкций и выгодность производства, динамичность и малые размеры электродвигателей и многое другое.

    Мы разберем самый «выгодный» в производстве и простой в бытовом применении асинхронный электродвигатель (индукционный двигатель), как электрическую машину переменного тока с частотой вращения ротора меньшим по сравнению с частотой магнитного поля, которое создается токами в обмотке статора:

    Он прост в изготовлении;

    Имеет относительно низкую цену;

    Надежен и неприхотлив при работе;

    Энерго- и эксплуатационно малозатратен;

    Имеет простой доступ к подключению в домашнюю электросеть без дополнительных преобразующих устройств;

    Нет необходимости регулировать частоту вращения ротора.

    Но при этом такие электромашины с асинхронным (индукционным) двигателем:

    Имеют низкий по силе пусковой момент;

    Большую величину пускового тока;

    Мощность с низким коэффициентом;

    Сложности с регулировкой скоростных характеристик ротора и отсутствие необходимой точности вращения;

    Скоростные характеристики вращения ротора ограничиваются частотными показателями сети (бытовая сеть имеет частоту в 50 Гц – двигатель может максимально развить обороты не более 3000 в минуту);

    Огромная (в квадрате) связь электромагнитного поля на статоре с напряжением в сети – при любом изменении напряжения в 2 раза, вращающий момент двигателя измениться в 4 раза, что намного хуже таких же показаний в электродвигателях на постоянном токе.

    Для людей далеких от всяких технических конструкций проведем легкий «ликбез»:

    Асинхронный электродвигатель имеет в своей конструкции статор (часть электромотора, которая находится в неподвижном, стабильном положении) и ротор (часть, которая вращается при подключении двигателя к сети), они разделены воздушным зазором и не соприкасаются между собой;

    Статорная обмотка является многофазной (3-хфазной), с проводниками равноудаленными один от другого на 120 градусов относительно оси вращения;

    Магнитное поле возникает в магнитопроводе статора, который меняет полярность под воздействием частоты тока проходящего по обмотке. Магнитопровод представляет собой пластины из электротехнической стали, собранных методом шихтовки в общий блок;

    Роторы в асинхронном двигателе могут быть конструктивно 2-х типов: короткозамкнутый и фазный. Их единственное различие – это исполнение обмотки на роторе, при аналогичном магнитопроводе как у статора.

    Короткозамкнутый ротор имеющий обмотку в виде «беличьего колеса» по аналогии конструкции, собирается из алюминиевых (иногда из меди или латуни) стержневых проводников, которые замкнуты с 2-мя торцевыми кольцами, проходя через специальные пазы в сердечнике ротора.

    У такого типа обмоток ротора при нерегулируемом пуске образуется не очень большой по величине пусковой момент, но требующий больших величин тока. Сейчас применяют в основном роторы с глубокими пазами для стержней, что позволяет увеличить сопротивление в обмотке и уменьшить величину пускового тока. Из-за таких недостатков раньше мало применяли короткозамкнутую схему обмотки ротора, но теперь при развитии линии частотных преобразователей многие фирмы достигли эффекта плавного пуска электродвигателей, регулируя наращивание частоты пускового тока.

    Так появились электромашины с короткозамкнутой схемой ротора со ступенчатым регулированием скорости вращения вала, появились многоскоростные электродвигатели с изменением числа пар полюсов в обмотке статора.

    Разновидностью асинхронного электродвигателя с короткозамкнутым ротором считаются двигатели с массивными роторами, где эта деталь механизма изготовлена полностью из ферромагнитного материала (стальной цилиндр) – это одновременно и магнитопровод и обмотка-проводник. Вращение ротора здесь происходит за счет создания индукции магнитного поля ротора, во взаимодействии с вихревыми токами магнитного потока статора. Такие конструкции намного проще изготавливать, следовательно они обходятся дешевле в производстве, имеют большую механическую прочность, что очень необходимо для машин с большой скоростью вращения и они имеют более высокую величину пускового момента.

    Принцип работы асинхронного электродвигателя с фазовым ротором

    Асинхронные электродвигатели с фазовым ротором допускают плавное регулирование скорости вращения вала ротора в широком диапазоне. Фазный ротор содержит в своей конструкции многофазную (3-хфазную) обмотку, выведенную на 2 контактных кольца, которые соединены с ротором единой конструкцией. Соединение с регулированной по величине напряжения электросетью происходит за счет графитовых или металлографитовых щеток, соприкасаемых с кольцами в единую цепь с обмотками ротора.

    В конструкцию управления работой ротора входят так же:

    Пускорегулирующий реостат, как активное сопротивление к каждой фазе;

    Дроссели индуктивности каждой фазы роторного узла, что, в конечном итоге, позволяет уменьшить пусковые токи и держит их на постоянном уровне;

    Дополнительны источник постоянного тока, что позволяет получать величины синхронной электромашины, то есть зависимость оборотов от частоты напряжения на ротора без разниц величин;

    Для управления скоростными характеристиками и электромагнитными полями на роторе включено питание установки от инвертора для машин с двойным питанием. Но возможно использовать эту конструкцию без помощи инвертора с заменой фазировки на противоположную от статорной.

    голоса
    Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector