Nara-auto.ru

Автосервис NARA
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как сделать простой ШИМ контроллер для электродвигателя 12в своими руками

Как сделать простой ШИМ контроллер для электродвигателя 12в своими руками

Один мой знакомый подал мне идею сделать электровелосипед своими руками. Поначалу задумка мне показалась странной, но потом я вник и даже загорелся. На финальном этапе сборки у меня уже почти всё было готово, оставался лишь ШИМ регулятор. Почему-то его я тоже захотел сделать сам. Результатом вполне доволен, поэтому дальше расскажу вам то, как своими руками сделать ШИМ контроллер для электродвигателя.

Про ШИМ регулятор

ШИМ (PWM) регулятор широкого применения – устройство, разработанное для плавного включения, выключения и регулировки мощности, оборотов, яркости и другого.

Ранее для регулировки оборотов электродвигателей изменяли питающее напряжение. Однако в современной электротехнике от этого отказались. Теперь регулировка происходит путём подачи на электромотор импульсов тока, которые имеют разную длительность. Что и делают ШИМ (широтно-импульсно модулируемые) регуляторы, которые в последнее время становятся всё более и более популярными.

Схемы ШИМ контроллеров универсальны – подойдут и для регулировки яркости ламп, и для регулировки скорости оборотов мотора да хоть для регулирования силы тока в зарядном устройстве.

Сфера применения ШИМ регуляторов очень велика.

Обзор на плату

Собранная плата самодельного ШИМ регулятора:

Управление платы ручное и осуществляется переменным резистором или внешним напряжением в диапазонах:

0,45 В – устройство выключено, коэффициент заполнения – 0%

0,5/3,5 В – плавное регулирование, коэффициент заполнения от 0,1% до 99,9%

3,6 В – устройство включено, коэффициент заполнения – 100%

Устройство работает при постоянном напряжении от 10 до 28 Вольт.

Максимальное напряжение ограничено максимально допустимым напряжением силовых ключей, а также обратным напряжением мощного диода в нагрузке, при отдельном от дополнительного источника питания управления на 15 В.

Советую при напряжение не доходящим до 15 Вольт не устанавливать стабилизатор.

Вместо него лучше подойдёт какой-нибудь диод или обычная перемычка.

Если же напряжение от 15 до 28 Вольт, то стоит установить линейный (например, 7815) или импульсный стабилизатор в виде готового модуля на MP2307, при этом необходимо выставить на нём напряжение 15 Вольт.

Заказать их можно на всё том же Алиэкспрессе.

При необходимости вы можете регулировать частоту плавно переменным резистором.

Для этого нужно подключить его на плату вместо перемычки.

Схема самодельного контроллера

Данная схема содержит минимальное количество компонентов в обвязках микросхем:

Основной контроллер ШИМ от 0% до 100%, что будет управлять всей мощностью в нагрузке, собран на микросхеме TL494.

При этом варианте включения компенсируется внутреннее смещение для формирования мертвого времени.

При коммутации больших токов возникают сильные помехи.

Изолированный источник питания +15 Вольт -12 Вольт с дополнительной защитой от перегрузок собран на микросхеме NE555.

Основной задаче является регулирование вторичных напряжений путём изменения частоты.

В зависимости от нагрузки он работает на частоте в диапазоне 120-480 кГц.

В случае перегрузки ширина импульса, а также частота, уменьшается.

Если же нагрузка отсутствует, на трансформаторе плюсовое плечо стремится к 25 вольтам, а минусовое напряжение уменьшается, пока не достигнет нуля.

Если на трансформаторе отсутствует нагрузка, то либо драйвер не подключён, либо холостой ход.

Для снижения помех и нагрузки на провода, отсекая реактивную энергию, следует установить обратный диод нагрузки в непосредственной близости к самой нагрузке.

В этом случае вы можете использовать проводники, чьё сечение меньше, чем у тех, что использовались при установке диода на удалении от нагрузки.

Тестирование контроллера

Одним способом применения данного контроллера является плавное регулирование оборотов электродвигателя.

При этом можно не удалять штатную дискретную схему регулировки оборотов – она остаётся, не нарушается и продолжает работать.

Схема подключается лишь тремя проводами: плюс на 12 Вольт, масса и провод самого электродвигателя.

Также плату можно использовать для замены переключателя и гасящего резистора в родной схеме.

Первым делом при тестировании убедитесь, что все детали на своём месте и надёжно закреплены.

Дальше изготовленный ШИМ регулятор для двигателя электровелосипеда должен быть одновременно подключён и к аккумулятору, и к мотору велосипеда, что будет приводить его в движение.

Используйте набор ячеек литиевых батарей, номинальное напряжение которые составляет 80 Вольт (такие батареи как раз используются в электровелосипедах).

Поворачивая потенциометр по часовой стрелке, двигатель вашего велосипеда постепенно начнёт вращаться, а его скорость увеличиваться пропорционально вращению ручки.

Если всё в порядке, то ваш самодельный ШИМ контроллер собран правильно.

Рекомендую следующее видео, в котором автор изготавливает ШИМ регулятор своими руками:

Как итог.

ШИМ регулятор своими руками готов. Собрать его не составит особого труда для любого, кто хоть немного разбирается в радиотехнике. Я собирал свой контроллер для использования в электродвигателе электровелосипеда, однако он может использоваться не только в двигателях. Это универсальное устройство – подойдёт и для настройки яркости ламп, и скорости оборотов мотора, и силы тока в зарядном устройстве.

Напишите в комментариях, как вы считаете насколько надёжны ШИМ-регуляторы с Алиэкспресс?

Электробайк. Контроллер двигателя своими руками

image

Как вы уже знаете из прошлых постов, у нас в компании есть DIY-движение. В свободное от работы время коллеги занимаются фрезеровкой печатных плат в домашних условиях, делают тепловизор на FLIR Lepton, а также решают семейные разногласия с помощью 4 контроллеров и 2 умных часов. Продолжим серию увлекательный историй! Сегодня я расскажу, как сделать контроллер к трехфазному двигателю электровелосипеда своими руками. Целью создания такого контроллера было:

  1. Изучение работы трехфазного мотора под управлением контроллера.
  2. Большинство контроллеров для электровелосипедов, представленных на рынке, — китайские. Они хоть и относительно дешевые (около 2.000 руб в зависимости от мощности), но являются неведомой коробкой, в которой неизвестно что происходит. И сразу к ней возникает очень много вопросов — экономично ли она потребляет и распределяет ток, какой у нее запас мощности, почему так сильно перегревается, преждевременно срабатывает защита по току и т.д.
Читайте так же:
Действия при регулировки клапанов

В тоже время на рынке представлены европейские качественные контроллеры для электробайков. Они оснащаются расширенными функциями, работают на разных напряжениях и токах и их можно программировать. Устанавливаются они на сверхмощные электровелосипеды. Но цена у них кусается — 10-20 тыс. рублей.

В итоге я решил пойти своим путем: разобраться в устройстве контроллера, сделать его прототип, а затем попытаться сделать контроллер качественнее китайского контроллера. На текущий момент проект у меня в разработке только и на уровне прототипа, готового варианта пока нет. Буду рад услышать ваши комментарии и советы.

Применение

В электровелосипедах используются трёхфазные бесщёточные электродвигатели с датчиками Холла. Стоит отметить, что применение подобных трёхфазных двигателей достаточно обширно:

  • Бытовая техника
  • Оргтехника
  • Электротранспорт
  • Промышленность

Устройство двигателя

Для разработки контроллера необходимо разобраться с принципом работы самого электродвигателя.

image

Электродвигатель состоит из фазных обмоток, магнитов и датчиков Холла, отслеживающих положение вала двигателя.

Конструктивно электродвигатели делятся на два типа: инраннеры и аутраннеры.

image

У инраннеров магнитные пластины крепятся на вал, а обмотки располагаются на барабане (статоре), в этом случае в движение приводится вал. В случае аутраннера всё наоборот: на валу — фазные обмотки, а в барабане — магнитные пластины. Это приводит в движение барабан.

image

Так как у велосипеда колесо крепится валом на раму, то здесь применителен тип аутраннера.

image

На этой картинке условно представлены три фазы с обмотками, соединёнными между собой. В реальности обмоток намного больше, они располагаются равномерно с чередованием по фазам по окружности двигателя. Чем больше обмоток — тем плавнее, чётче, эластичнее работает двигатель.

В двигатель устанавливаются три датчика Холла. Датчики реагируют на магнитное поле, тем самым определяя положение ротора относительно статора двигателя. Устанавливаются с интервалами в 60 или 120 электрических градусов. Эти градусы относятся к электрическому фазному обороту двигателя. Необходимо учитывать, что чем больше в двигателе обмоток на каждую фазу, тем больше происходит электрических оборотов за один физический оборот мотор-колеса.

image

Обмотки трёх фаз в большинстве случаев соединяются между собой по двум схемам: звезда и треугольник. В первом случае ток проходит от одной из фаз к другой, во втором — по всем трём фазам в разной степени. Иногда эти две схемы подключения комбинируют в одном двигателе, например в электромобилях. При старте и наборе скорости идёт соединение фаз по звезде: она даёт больший момент при относительно низких оборотах; далее, после набора скорости, происходит переключение на треугольник, в результате количество оборотов увеличивается, когда уже не нужен большой крутящий момент. По сути, получается условно автоматическая коробка передач электродвигателя.

Цикл работы

Чтобы привести в движение трёхфазный двигатель, нужно рассмотреть цикл его работы за электрический оборот. Итак, имеем три фазы — A, B, C. Каждая из фаз получает положительную и отрицательную полярности в определённый момент времени. Поочерёдно по шагам пропускается ток от «плюса» одной фазы к «минусу» другой фазы. В итоге получается шесть шагов = три фазы × две полярности.

image

Рассмотрим эти шесть шагов цикла. Предположим, что положение ротора установлено в точке первого шага, тогда с датчиков Холла мы получим код вида 101, где 1 — фаза А, 0 — фаза B, 1 — фаза С. Определив по коду положение вала, нужно подать ток на соответствующие фазы с заданными полярностями. В результате вал проворачивается, датчики считывают код нового положения вала — и т. д.

В таблице указаны коды датчиков и смена комбинаций фаз для большинства электродвигателей. Для обратного хода колеса (реверса) достаточно перевернуть знаки полярности фаз наоборот. Принцип работы двигателя довольно прост.

Цикл двигателя представлен в gif-анимации.

Транзисторы и Н-мост

Но чтобы поочерёдно подавать ток на каждую из фаз и менять их полярность, необходимы транзисторы. Ещё нам нужна передача больших токов, высокая скорость переключения и чёткость открытия/закрытия затворов. В данном случае удобнее управлять затворами по напряжению, а не по току. Поэтому оптимальны полевые (MOSFET) транзисторы. Чаще всего их используют в контроллерах. Очень редко можно встретить комбинированный вариант транзисторов.

image

Для переключения фаз со сменой их полярностей используют классическую схему Н-моста (H-Bridge) из полевых транзисторов.

image

Он состоит из трёх пар транзисторов. Каждая из пар подключается к соответствующей фазе обмотки двигателя и обеспечивает подачу тока со значением (+ или –). Транзисторы, отвечающие за включение фазы с положительным значением, называют верхними ключами. С отрицательным — нижними. Для каждого шага открывается пара ключей: верхний одной фазы и нижний соседней фазы. В результате ток проходит от одной фазы к другой и приводит электродвигатель в движение.

Читайте так же:
Регулировка холостого хода daewoo tico

image

Из схемы видно, что мы не можем включить одновременно верхний и нижний ключ у одной и той же фазы: произойдёт короткое замыкание. Поэтому очень важно быстрое переключение верхних и нижних ключей, чтобы в переходных процессах не появилось замыкание. И чем качественнее и быстрее мы обеспечим переключения, тем меньше у нас будет потерь и нагрева/перегрева транзисторов H-моста.

Для запуска остаётся обеспечить управление затворами ключей H-моста. Для управления H-мостом нужно:

  1. Считать показания датчиков Холла.
  2. Определить, в каком положении какую пару ключей включать.
  3. Передать сигналы на соответствующие затворы транзисторов.

Прототип на Ардуино

Под рукой у меня была Arduino UNO, и я решил собрать контроллер на её основе.

image

Первым делом я подал на датчики Холла питание 5 вольт от Ардуино (его достаточно для датчиков). Сигнальные провода от датчиков подключил на цифровые пины Ардуино, написав простейшую программу для считывания и обработки сигналов с датчиков.

Затем собрал Н-мост из полевых NPN-транзисторов. Подвёл к мосту независимое питание на 12 вольт. Но при отладке, чтоб убедиться в работоспособности, я подключил напрямую шесть пинов 5V из Ардуино на затворы H-моста. У большинства полевых транзисторов затвор работает на 20 вольт. Так делать нельзя, потому что Н-мост будет плохо работать и перегреваться. Но для кратковременных тестов это пойдёт. Кое-как, с сильными перегревами и страшными звуками, вибрациями и толчками колесо медленно закрутилось. Начало положено.

Мостовые драйверы

Далее предстояла работа над напряжением 20 вольт на управление затворами. Для этого существуют мостовые драйверы транзисторов, они обеспечивают стабильные импульсы в 20 вольт на затвор и высокую скорость отклика. Сначала у меня были популярные драйверы для маломощных моторов L293D.

image

Для управления затворами его достаточно, к тому же их очень просто использовать. Один такой драйвер может обеспечить питанием две пары ключей. Поэтому я взял две штуки L293D. Собрал контроллер с этими драйверами, и колесо начало крутиться существенно плавнее, посторонних звуков стало меньше, нагрев транзисторов уменьшился. Но при увеличении оборотов синхронизация с контроллером пропадала, появлялся посторонний звук, колесо дёргалось, вибрировало и полностью останавливалось.

В это же время я наткнулся на два варианта мостовых драйверов:

  • HIP4086
    image
  • IR2101
    image

Что касается HIP4086, то это полноценный мостовой драйвер, предназначенный для трёхфазного электродвигателя. Мне он показался несколько замороченным, и мои попытки использовать его в контроллере не увенчались успехом: он у меня так и не заработал. Углублённо разбираться в причинах не стал.

А взял я IR2101 — полумостовой драйвер, обеспечивающий работу нижнего и верхнего ключей для одной фазы. Несложно догадаться, что таких драйверов нужно три. К слову, драйвер очень прост в использовании, его подключение происходит безболезненно и легко. Получилась такая схема:

image

image

И готовый результат

image

Собрал контроллер с этим драйвером и запустил двигатель. Ситуация с работой электродвигателя кардинально не поменялась, симптомы остались те же, как и в случае с драйвером L293D.

Аппаратное прерывание

И тут я понял, в чём дело: Ардуино не успевает обрабатывать показания датчиков Холла! Поэтому необходимо было использовать пины Ардуино с аппаратным прерыванием. Так как у Ардуино УНО таких пинов всего два, а под датчики нужно три пина, надо взять Ардуино Леонардо или Искра Нео, где таких пинов — четыре штуки.

image

Переписав программу под прерывания и подключив Искру Нео вместо УНО, я повторил испытания.

Колесо наконец-то заработало чётко, без вибраций, шумов, отлично стало набирать обороты без рассинхронизации. Прототип оказался жизнеспособным. Но это ещё не полноценный контроллер, поскольку в нём не было обвязки с защитами и обеспечением качественного ШИМ-сигнала.

Прототип на базе микросхемы MC33035

Параллельно с разработкой контроллера на Ардуино я рассматривал альтернативные варианты логической части контроллера. И это привело меня к микросхеме MC33035. Это старая разработка от Motorola, сейчас её выпускает ON Semiconductor. Создана специально для мощных трёхфазных двигателей.

image

image

  • Отвечает за всю логическую часть контроллера
  • Считывает показания с датчиков Холла
  • Определяет положения вала
  • Выдаёт сигналы для затворов Н-моста на их драйверы
  • Имеет возможность подключения индикатора ошибок, перегрева
  • Обрабатывает и передает ШИМ-сигнал (PWM)
  • Осуществляет реверс (обратный ход колеса)

Одним словом, микросхема содержит всё необходимое для управления электродвигателем. Её стоимость очень низкая: на Алиэкспрессе — около 50 рублей. Для сборки полноценного контроллера на её основе потребуется микросхема MC33035, полумостовые драйверы и Н-мост из полевых транзисторов. Я также собрал контроллер на этой микросхеме. Работает отлично, стабильно, колесо крутится как надо на различных оборотах. Но функционал микросхемы ограничен, если необходимо наворотить различные функции, вывод на дисплей скорости, одометр, расход батареи, то опять же возникает необходимость дополнительно подключить Ардуино или что-то аналогичное.

Схема с MC33035

Читайте так же:
Регулировка зажигания на мотоцикле лифан

image

image

image

Главное преимущество контроллера на базе MC33035 — это простота в использовании. Просто покупаете микросхему, собираете Н-мост, спаиваете всё на плату с небольшой обвязкой — и контроллер готов. Если нужно просто запустить двигатель с ШИМ-сигналом и управлять им — оптимальный вариант.

Контроллер на базе Ардуино — вариант сложнее, понадобится писать логику, обеспечивать дополнительные защиты контроллера. Но для экспериментов, прототипов, дополнительного функционала, использования различных режимов работы двигателя — подходящий вариант. Поэтому я решил пока отложить MC33035 и продолжить работу с Ардуино.

ПЛАТА TDA1085: подключаем электродвигатель

ПЛАТА TDA1085: подключаем электродвигатель

Плата регулятор оборотов без потери мощности для двигателей от стиральных машин мощностью до 1000Вт. Плата выполнена на оригинальном контроллере TDA1085.

Технические характеристики платы

Плата позволяет регулировать обороты коллекторного двигателя в широком диапазоне, не теряя мощности на валу.

Питание платы — напрямую от сети 220В 50Гц.
Мощность — до 1000 Вт (25А 600В) — стандартные двигатели от стиральных машин автомат. При самостоятельной замене симистора на ВТА41 600, достигается мощность до 9000 Вт (максимальная), 4000 Вт (номинальная).
Применение — применяется только с коллекторными электродвигателями (электродвигателями со щетками), с обязательным наличием таходатчика (отлично подходит для электродвигателей от стиральных машин автомат).
Диапазон регулировки оборотов — от 0 до максимальных (заявленных производителем электродвигателя).
Система плавного разгона — ЕСТЬ (см. пункт «Первичный запуск и настройка платы»)
Ограниченный диапазон оборотов — ЕСТЬ (см. пункт «Первичный запуск и настройка платы»)

Первичный запуск и настройка платы

Подготовка и подключенияч электродвигателя к плате

motor 004

Для того чтобы подключить электродвигатель к плате или напрямую в сеть, вам надо разобраться с проводами. Здесь вам пригодится мультиметр. Двигатель (рис.1) имеет три (иногда четыре) группы контактов:

  • Обмотка электродвигателя (может иметь два или три вывода со средней точкой);
  • Щетки электродвигателя (два вывода проводов);
  • Таходатчик (два вывода проводов);
  • Термопара (два вывода проводов), термопара устанавливается не на всех двигателях и здесь не используется (на рисункке не обозначена).
  1. Сначала надо найти провода «Таходатчика». Обычно они земетно меньшего сечения и при прозвонке мультиметром, могут показывать сопротивление или звониться с «перезвоном». Таходатчик расположен с задней части (с обратной стороны от шкива) электродвигателя, с выходящими из него проводами.
  2. Щетки находятся путем последовательной прозвонки проводов. Два провода должны иметь замкнутый контакт между собой, а так же должны прозваниваться с пластинами контактов коллектора электродвигателя.
  3. Обмотка может иметь два или три вывода проводов. Определить их можно так же последовательным прозваниванием проводов. Если у вас три вывода, значит один из них будет средней точкой и надо замерить сопротивление между ними. Два из них будут показывать большее значение, один из них меньшее сопротивление. Если выбрать пару проводов с большим сопротивлением, то будет меньше оборотов, но больше сила крутящего момента. И наоборот, обмотка с меньшим сопротивлением даст боьше оборотов, но меньшую мощность крутящего момента на валу.
  4. Провода термопары имеют два провода и обычно окрашены в белый цвет. В нашем случае использоваться не будут и на рисунке они не указаны.

Теперь, после того как все провода определены, надо произвольно соединить один провод от щеток с одним из проводов выбранной обмотки (пункт 3 по тексту выше). Два оставшихся провода (от щеток и обмотки), подключаем в сеть 220В. Если вы захотите изменит направление вращения ротора, просто поменяйте провода местами при подключении.

После того как вы проверили работу электродвигателя от сети, можно его подключить к плате. Для этого с обратной стороны платы посмотрите на буквенные обозначения «АС», «М», «Т».

АС — указывает на клемму к которой подключаем 220В.
М — обозначает клемму к которой подключаем мотор.
Т — клемма для подключения таходатчика.

Настройка.

Не смотря на то, что все платы проходят проверку и имеют предварительную настройку, скорее всегго вам надо будет подстроить ее к вашему электродвигателю. Вы можете настроить: плавность набора оборотов; таходатчик; диапазон регулировки оборотов.

! ВНИМАНИЕ. Последовательность ниже перечисленных действий по настройке ни в коем случае не меняем.

В первую очередь, настраиваем плавность набора оборотов. Это делается с помощью резистора «R2» (см. рис 2), который и отвечает за плавность пуска и набора оборотов.

Изначально этот регулятор должен находиться в крайнем правом положении (выкручен вправо до щелчка). Это говорит о том, что плавность регулировки оборотов основным резистором «Ro» будет отзывчивой и соответствовать скорости его вращения рукой. Т.е. електродвигатель будет реагировать мгновенно на повороты резистора «R0». Если же, «R2» выкрутить до конца влево (10 оборотов), то старт и регулировка оборотов будет плавной, даже при самом резком вращении резистора «R0».

Это удобно, если вам необходимо чтобы двигатель при включении самостоятельно плавно набирал заданные обороты. Если при включении платы, двигатель работает рывками или резко набирает обороты до максимальных, не отвечая при этом на регулировку оборотов «R0», значит, настройка плавности оборотов должна выполняться вторым этапом, а резистор «R2», должен быть выкручен до конца вправо (до щелчка).

Настройка таходатчика. Если при включении платы двигатель работает ровно (без рывков) и отвечает на регулировку оборотов «R0», значит, никакой настройки не таходатчика не требуется. Иначе надо подстроить резистор «R3», плавно поворачивая его вправо пока обороты не упадут и не начнут реагировать на регулировку оборотов резистором «R0».

Читайте так же:
Датчики движения для освещения регулировка времени

Диапазон регулировки оборотов. Если ваш электродвигатель нормально регулируется и работает без рывков, но верхний предел оборотов не максимальный, значит надо настроить регулировку оборотов. Для этого установите резистор «R0» на максималоьные обороты, а резистор «R1» начните плавно и медленно поворачивать вправо. Обороты при этом должны увеличиваться. Регулируйте до тех пор, пока не найдете верхнюю «мертвую точку», а резистор «R1» перестанет отвечать на регулировку. Таким образом вы достигните регулировки оборотов во всем диапазоне резисторв «R0» , от нуля до максимума. Еще эта регулировка полезна, если вы хотите ограничить обороты например, в 50% от максимума.

Подключение реверса.

Если вы изначально подключали плату к электродвигателю, вы должны были установить перемычку между концами проводов обмотки щеток. Теперь для подключения электродвигателя к плате через реверс, вам надо эту перемычку убрать.

Провода реверсного переключателя разделены кембриками (изоляционными трубками) на три пары проводов. Одна пара из трех, имеет залуженные концы. Эту «залуженную» пару подключаем к плате на клемму с меткой «М». Две оставшиеся подключаем к обмотке и щеткам. Какая пара к обмоткам, а какая к щеткам, не имеет значения. Полярность проводов во всех случаях не важна.

!ВНИМАНИЕ. Переключение реверса во время работы, может испортить плату и/или электродвигатель. Исключите такую возможность в работе. Переключайте при остановленном электродвигателе.

Как лучше применить плату в системе.

motor 009

Поскольку электродвигатели от стиральных машин автоматов высокооборотистые, они все-таки расчитаны работать в этом диапазоне. Так как это связано с его охлаждением и моментом силы вращения на валу (крутяшим моментом). Поэтому, если вы планируэте исспользовать електродвигатель в работе на малых оборотах с полным моментом силы врщения (на всю мощность заявленную производителем), то вам возможно надо будет установить дополнительное охлаждение. Если коснувшись рукой электродвигателя, вы не можете удержать руку более 15 чек., значит вам необходимо дополнительное охлаждение.

Используемый электродвигатель очень высокооборотистый, максимальная его мощность достигается при регулировке от 600 об/мин. все, что ниже будет иметь не максимальную мощьность двигателя. Поэтому если вам для работы нужны низкие обороты от 600 до 0, вам надо применить ременную передачу с набором шкивов или из двух шкивов для понижения оборотов.

От ременной передачи вы получите только преимущества: получите больше силы крутящего момента на валу; плавный пуск и регулировку оборотов.

Если вам надо подключить электродвигатель постоянногшо тока — установите диодный мост на выходе клеммы «М» остальное подключение по вышеизложенному тексту.

Тема: Надо понизить обороты на электродвигателе

Реальных вариантов три .
1. Понизить частоту сети — ДОРОГО .
2. Поставить механический редуктор — СЛОЖНО .
3. Заменить двигатель — НЕОХОТА .

    • Поделиться этим сообщением через

    Сообщение от FAI4

      • Поделиться этим сообщением через

        • Поделиться этим сообщением через
          • Поделиться этим сообщением через

          Сообщение от RA3YCI

          Правильно делаете. Эта последовательность ускоряет и улучшает смешивание, но не гарантирует остаточного залипания на стенках плохо перемешанного раствора. Что гарантированно в моем случае.

          Добавлено через 4 минуты

          Сообщение от R3D-209

          Лопата и корыто уже есть. Но также есть желание оставить спину здоровой, а также немного понимания того, что не стоит на эту железку навешивать оборудование которое сделает её неоправданно дорогой.

          Добавлено через 7 минут

          Сообщение от RA3DRI

            • Поделиться этим сообщением через

            Сообщение от FAI4

              • Поделиться этим сообщением через

              Сообщение от UT3IM

              Реальных вариантов три .
              1. Понизить частоту сети — ДОРОГО .
              2. Поставить механический редуктор — СЛОЖНО .
              3. Заменить двигатель — НЕОХОТА .

              1. Более простого решения так пока и не последовало . Просто моя логика мне подсказывает, что если заводской частотный преобразователь стоит примерно 6-7 т.р., то совсем простая схема в пластиковой коробке должна как минимум раза в 2.5 стоить меньше.
              2. Про механику я сказал выше.
              3. Буду делать все чтобы оставить именно этот хороший на мой взгляд движок.

              Добавлено через 19 минут

              Сообщение от RK6ATW

                • Поделиться этим сообщением через

                Спасибо за явные советы

                alt=»Миниатюры» />Миниатюры alt=»Изображения» />Изображения

                  • Поделиться этим сообщением через

                  Сообщение от FAI4

                    • Поделиться этим сообщением через

                    Сообщение от FAI4

                    Прежде всего, (если не решать вопрос механически, через шкивы) нужно решить каким способом можно регулировать обороты асинхронного двигатеря.
                    1. Обороты асинхр. двигателя определяются частотой сети. n-номин.
                    2. Обороты опр. напряжением на обмотках.(это то что на сх.№2)

                    В первом случае это штатный режим(при норм. напряжении) и можно ожидать паспортной мощности.
                    Во втором случае обороты можно уменьшить, но мощность будет только частичной 10-20% т.к. не поддерживается нужное скольжение вращающегося магнитного поля.

                    Есть способ регулировки изменением частоты переменного тока. Этот способ позволяет регулировать обороты в достаточныз пределах, но довольно дорогой.
                    Есть и другие способы регулирования, но они ещё более дорогостоящие.

                    Вам легче обменять двигатель на 750 оборотный. Это самый приемлемый споcоб обеспечить работоспособность б.мешалки.

                    Всё про регулировку оборотов двигателя от стиральной машины

                    Стиральным машинам, как впрочем и любым бытовым приборам, свойственно ломаться. И хорошо, если случившуюся поломку можно исправить малыми финансовыми затратами. Но увы, бывают случаи, когда чинить стиральную машину нет никакого смысла, так как проще и дешевле купить новый агрегат. Но что делать со старой? Тем более, если ее двигатель находится в отличном состоянии и продолжает исправно работать.

                    Реле регулировки оборотов

                    Реле регулировки оборотов

                    Нужные ненужные вещи

                    Многие просто вывезут машину на свалку и забудут о ней. Но это не решение вопроса для рачительного и умелого хозяина. Вы были бы удивлены, узнав, куда и какие детали стиральной машины можно было бы приспособить в домашнем хозяйстве. И в нашей статье мы расскажем о наиболее ценной детали данного агрегата – об исправном двигателе стиральной машинки-автомат.

                    Наиболее подходящий вариант использования электродвигателя – это его подключение к другому устройству. Например, электроточильному станку (или любому другому). Но для этого, прежде всего, нужно подключить мотор к бытовой сети 220 В и отрегулировать количество его оборотов.

                    oborotov_dvigatelya_ot_stiralnoj_mashiny_7

                    Подключение к 220 Вольт

                    Для того чтобы подключить электродвигатель к домашней электросети, понадобится мультиметр.

                    С его помощью прозваниваем выходные провода, идущие от электромотора. Цель данной операции: обнаружить среди проводов (от 2 до 4 штук) два с наибольшим сопротивлением (порядка 12 Ом). Соответственно, если проводов всего 2, то задача упрощается до минимума. На данный момент мы имеем на руках два силовых провода от катушки возбуждения двигателя стиральной машины.

                    oborotov_dvigatelya_ot_stiralnoj_mashiny_6

                    Далее выявляем провода от коллектора и щеток двигателя. Их тоже два, так что перепутать их невозможно.

                    Третья необходимая нам пара проводов принадлежит таходатчику. В основном они прикреплены на корпусе двигателя. В противном случае придется его (мотор) частично разобрать.

                    Один из коллекторных проводов соединяем с катушечным. А оставшуюся пару (коллектор — катушка) подключаем удобным способом к сети 220 Вольт. Проводим пробный запуск.

                    Если вы не знаете, что означают и как выглядят названные нами детали: катушка возбуждения, коллектор, таходатчик и так далее, лучше отложите чтение данной статьи до ознакомления с устройством и принципом работы коллекторного двигателя стиральной машины-автомат.

                    oborotov_dvigatelya_ot_stiralnoj_mashiny_5

                    Регулировка оборотов двигателя от стиральной машины-автомат

                    Скорость вращения двигателя играет важную роль в его дальнейшем применении. Существует большое количество схем и печатных плат, на основе которых производится подключение электродвигателей стиральных машин. И еще большее количество плат регулировки оборотов двигателя от стиральной машины самодельного изготовления, которые порой намного эффективнее и качественнее, чем их фабричные аналоги. Рассмотрим две схемы регулировки оборотов двигателя от стиральной машины.

                    oborotov_dvigatelya_ot_stiralnoj_mashiny_4

                    Регулятор напряжения

                    Самым простым и доступным регулятором количества оборотов электромотора стиральной машины является любое устройство, предназначенное для подобных действий. Это может быть:

                    • Димер;
                    • Гашетка электродрели;
                    • Поворотное колесо и т.д., взятое от любого бытового прибора или приобретенное в магазине.

                    Смысл операции по регулировке оборотов прост и заключается в уменьшении или увеличении поступающего напряжения на двигатель из сети 220 Вольт. То есть поворачивая колесо регулировки, мы регулируем напряжение, а следовательно, и задаем скорость вращения. Схема данного подключения выглядит следующим образом:

                    • Провод от катушки (1) соединяем с кабелем, идущим от якоря.
                    • 2-катушечный провод направляем на сеть.

                    oborotov_dvigatelya_ot_stiralnoj_mashiny_4

                    • Оставшийся кабель (2) якоря замыкаем на димер.
                    • Второй выход димера – на сеть.
                    • Производим пробный запуск электромотора и работу регулятора.

                    Если вы ничего не перепутали, двигатель будет послушно изменять количество своих оборотов. Но появится одна большая проблема. При касании к вращающейся оси двигателя он будет останавливаться. То есть при малейшем стороннем воздействии происходит потеря мощности, независимо от подаваемого напряжения. По сути, мы имеем на руках работающий движок без каких-либо полезных функций.

                    Подключение через плату (микросхему)

                    Наша схема регулировки оборотов изначально не была самой элементарной. И именно для этого мы использовали в ней тахогенератор. Теперь пришло время заняться им. Ведь с помощью таходатчика мы сможем регулировать обороты двигателя стиральной машины без какой-либо потери его мощности, то есть превратив электромотор в реально функциональное устройство.

                    В нашем случае таходатчик является посредником между двигателем и микросхемой, которая выглядит следующим образом. Данная схема создана на основе заводской платы с маркировкой TDA 1085. Приобрести ее не составит никакого труда в магазинах радиотехники.

                    Вполне уместным будет вопрос — что изменится в работе двигателя после его подключения через микросхему? Очень многое.

                    Если при обычном подключении, описанном нами выше, запускать двигатель в работу приходилось движением руки. То теперь это возможно простым поворотом тумблера. При попытке воздействия на вращающийся шкив двигатель не останавливается полностью, а сбрасывает обороты буквально на долю секунды, после чего возвращается к заданной мощности, но уже с учетом возросшей нагрузки.

                    То есть встроенная нами микросхема, получив сигнал от таходатчика об уменьшении количества оборотов из-за возросшей нагрузки, мгновенно реагирует на это и увеличивает мощность, а следовательно, и количество оборотов электромотора.

                    голоса
                    Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector