Nara-auto.ru

Автосервис NARA
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Условия синхронизации синхронных генераторов

Условия синхронизации синхронных генераторов

Подготовка СГ к включению на парал­лельную работу и сам процесс включения называются синхронизацией.

Эти способы рассмотрены ниже.

Для безударного включения СГ на параллельную работу необходимо выполнить следующие условия синхронизации:

1. равенство напряжения Uсети и ЭДС Еподключаемого генера­тора, т. е.

2. равенство частот сети fи подключаемого генератора f , т. е. f= f .

3. совпадение по фазе одноименных векторов фазных напряжений обоих генераторов, или, иначе, равенство нулю угла сдвига по фазе указанных векторов, т. е. φ = 0°.

4. одинаковый порядок чередования фаз 3-фазных генераторов, т.е. А- В -Си

А-В- С. На практике это означает, что выводы А, В и С каждого генератора должны при включении на шины, подключаться к шинам соответственно А, В и С ГЭРЩ.

Объясним, как проверяется выполнение этих условий и что надо делать при их нарушении.

Для проверки выполнения первого условия используют вольтметр с переключателем, позволяющим поочередно измерить напряжение на шинах (сети) и на зажимах генератора, включаемого на шины.

Если напряжение подключаемого генератора больше (меньше) напряжения на шинах, то поступают так:

1. при ручном регулировании вручную уменьшают (увеличивают) ток возбуждения подключаемого генератора при помощи реостата возбуждения, рукоятка которого выведена на лицевую часть генераторной панели каждого генератора;

2. при автоматическом управлении уменьшают (увеличивают) ток возбуждения воздействием на регулятор уставки напряжения автоматического регулятора напряжения (АРН) генератора, рукоятка которого выведена на лицевую часть генераторной панели каждого генератора.

Для проверки выполнения второго условия используют частотомер с переключателем, позволяющим поочередно измерить частоту напряжения на шинах (сети) и на зажимах генератора, включаемого на шины.

Если частота тока подключаемого генератора больше (меньше) частоты тока на шинах, то у подключаемого генератора уменьшают (увеличивают) подачу топлива дизелю поворотом рукоятки управления серводвигателя в сторону «Меньше» («Больше»).

Эта рукоятка выведена выведена на лицевую часть генераторной панели каждого генератора.

Для проверки выполнения третьего условия используют ламповый или стрелочный синхроноскоп. Включить генераторный автомат надо в момент, когда погаснут все 3 лампы (если синхроноскоп включен по схеме «на темноту»), либо верхняя (если синхроноскоп включен по схеме «на вращение огня»), либо если стрелка синхроноскопа займет положение «12 часов».

Проверка выполнения четвертого условия в процессе эксплуатации судна не делается. Это объясняется тем, что необходимый порядок подключения генераторов к шинам обеспечивают специалисты-электромонтажники судоверфи.

Поэтому судовым электромеханикам нет надобности проверять выполнение этого условия.

Однако после выполнения ремонтно-профилактических работ, в ходе которых генератор отсоединялся от шин ГЭРЩ, проверка выполнения этого условия обязательна.

Если все условия синхронизации выполнены, то включение гене­ратора на шины ГРЩ будет безударным, а сам генератор после включе­ния останется работать в режиме холостого хода.

10.3. Последствия нарушений условий синхронизации.

От того, какое именно условие не выполнено, зависят последствия нарушения усло­вий синхронизации. Рассмотрим поочередно нарушение каждого из перечисленных условий.

1. При нарушении первого условия | U| ≠ | E|.

В этом случае в замкнутой цепи, образованной последовательно включенными через шины ГЭРЩ обмотками статоров СГ, возникнет т.н. уравнительный ток.

Этот ток, протекая через обмотки статоров обоих генераторов, подмагничивает генератор с меньшим напряжением и размагничивает генератор с большим напряжением.

В результате напряжения параллельно включенных генераторов выравняются.

Вместе с тем уравнительный ток нагружает обмотки статоров обоих генераторов, нагревая их и линии электропередачи между генераторами и не позволяя использовать генераторы по току полностью.

2. При нарушении второго условия синхронизации f ≠ f .

Сразу после включения генератора на шины возникнет переходный процесс, харак­тер которого зависит от значения разности частот обоих генераторов.

Если разность частот менее 0,75 Гц, то после подключения генератора его ротор совершит несколько колебательных движений (качаний) с постепенно убывающей амплитудой и затем под действием собственной синхрони­зирующей мощности втянется в синхронизм.

После этого роторы обоих генера­торов станут вращаться с одинаковой скоростью.

Если эта разность составляет несколько герц, ротор подключен­ного генератора может не войти в синхронизм и будет перемещаться относительно ротора другого генератора.

Возникающие при этом механические толчки на валу могут привести к тому, что не только подключенный генератор не войдет в синхронизм, но могут выпасть из синхронизма другие параллельно работающие генераторы.

3. Последствия нарушения третьего условия (φ ≠ 0°) зависят от взаимного положения роторов в момент включения генератора на параллельную работу.

Рассмотрим 3 характерных случая:

а) генератор включен при положении стрелки синхроноскопа «без пяти минут 12 часов» (при этом стрелка синхроноскопа должна вращаться по часовой стрелке).

В этом случае он сразу же перейдет в генераторный режим и снимет часть нагрузки с работающего генератора.

При этом на валах обоих генераторов возникнут динамические моменты: тормозного характера у подключенного генератора и подкручивающего у работающего.

После этого надо постепенно подачу топлива увеличивать у подключенного генератора и одновременно уменьшать у работающего. В момент времени, когда показания кило ваттметров обоих генераторов станут одинаковыми, надо перестать изменять подачу топ-лива.

б) генератор включен при положении стрелки синхроноскопа «пять минут после 12 часов».

Читайте так же:
Как отрегулировать фары на митсубиси паджеро спорт

В этом случае он сразу же перейдет в двигательный режим и добавит нагрузку на работающий генератор.

При этом на валах обоих генераторов возникнут динамические моменты: подкручивающий у подключенного и тормозной у работающего генератора.

В результате «подкручивания» подключенный генератор может пойти «вразнос» и будет отключен защитой по обратной мощности.

Если защита не сработала, что может быть при небольшом, неопасном значении обратной мощности подключенного генератора, надо сразу после включения начать увеличивать подачу топлива у подключенного генератора и уменьшать у работающего.

В момент времени, когда показания киловаттметров обоих генераторов станут одинаковыми, надо перестать изменять подачу топлива.

в) генератор включен на шины при положении стрелки синхроноскопа «6 часов».

В этом случае ротор подключенного генератора «перевернут» по отношению к ротору работающего.

При этом в замкнутой цепи, образованной последовательно включенными через шины ГЭРЩ обмотками статоров СГ, напряжение работающего генератора и ЭДС подключенного суммируются (совпадают по фазе).

Поскольку обмотки статоров имеют незначительное сопротивление, под действием двойного напряжения U+ E= 220 + 220 = 440 В цепи возникнет ток короткого замыкания.

В результате отключится один или оба автоматических выключателя (в последнем случае судно обесточится).

Из сказанного следует, что процесс синхронизации генераторов — достаточно ответственный.

В соответствии с Правилами технической эксплуатации электрооборудования судов, именно вахтенный механик должен выполнять все действия, связанные с синхронизацией, переводом и распределением нагрузки при параллельной работе генераторов.

Судовой электромеханик включает на параллельную работу генераторы только в двух случаях – при использовании методов грубой синхронизации или самосинхронизации.

Параллельная работа генераторов

Параллельное подключение дизельных генераторов ― действенный метод повышения мощности электросистемы. Синхронное подключение используется для создания основного или резервного источника энергии на крупных коммерческих объектах и в жилых районах.

Преимущества синхронизации

На единственный генератор, подключенный к электросистеме, ложится основная нагрузка, что провоцирует сбои, аварийное отключение электросети и выход из строя устройств. Избежать подобного, равномерно распределить и оптимизировать мощность на каждую единицу в сети помогает параллельное подключение ДГ.

При введении в эксплуатацию нескольких машин появляется возможность регулировки суточного потребления энергии. Например, в ночное время потребность в электроэнергии снижается, поэтому для экономии ресурсов и топлива часть оборудования отключается.

Другие преимущества синхронного подключения:

  1. Проведение внепланового ТО рабочих установок без полного отключения системы.
  2. Использование для подключения дизельных генераторов меньшей мощности.
  3. При аварийном отключении одного из ДГ подача электроэнергии не прекращается.
  4. Повышение качества работ за счет отсутствия колебания напряжения.
  5. Защита входящих в сеть установок от перегрева во время пикового потребления энергии.

Синхронное подключение ДГ снижает первоначальные капиталовложения, оставляя возможность для последующего ввода установок большей мощности.

Требования к подключению

Для получения перечисленных преимуществ, необходимо придерживаться определенных правил подключения. При их несоблюдении наблюдаются перебои в работе установленного оборудования – одни из единиц перегружены, другие не используются на полную мощность, что ведет к снижению КПД устройств, повышенному расходу ресурсов и увеличению нагрузки на все узлы системы.

Основные условия подключения:

  • равномерная нагрузка на каждую единицу оборудования, входящую в систему;
  • соблюдение порядка чередования фаз электросети и подключение ДГ;
  • совпадение фаз на момент подключения.

Добиться равных показателей фазы в момент подключения помогает регулировка тока в обмотке возбуждения и скорость вращения ротора. При разнице этих показателей процесс синхронизации может быть не достигнут. Вычислить и отрегулировать частоту помогает специальный прибор ― фазоуказатель.

Виды синхронизации и типы подключение ГДУ

Процедура синхронизации на предприятиях выполняется разными методами. Для этого используют ручные способы, автонастройку и их комбинации, когда часть работы выполняет техника, а часть ― специалисты.

  • Точное ― включение происходит при равных значениях фаз с выравниванием частоты и напряжения генератора.
  • Самосинхронизация ― частота вращения генератора примерно равна системной. Установка генератора в систему с последующим возбуждением.
  • Индукционное ― частота и напряжение генератора примерно равны системным.

Какой из методов подойдет в определенном случае, зависит от особенностей и характеристик дизельного генератора, требований устройства к величине напряжения и частоты.

Точная синхронизация

Метод требует немного времени и наличие профессиональных знаний. Преимущественно применяется на мощных генераторных установках.

Проводится при помощи специальной аппаратуры в автоматическом или полуавтоматическом режиме. Синхроскоп считывает параметры генератора, находящегося в рабочем режиме, и определяет подходящий момент для его параллельного подключения.

При выполнении необходимо придерживаться некоторых условий: разница в частотах не более 0,1 %, угол напряжение не выше 10 градусов. Разбег сетевых показателей и напряжения ГУ при автоматической подгонке не должен превышать 1 %, при ручной ― 5 %.

  • подходит только для высокомощного оборудования;
  • сложность подгонки всех параметров;
  • шанс механического повреждения;
  • длительный подготовительный этап.

Самосинхронизация ДГ

К преимуществам метода относится ― сокращение времени на подготовительный период, точная подгонка параметров требует только выравнивания скорости вращения генераторов (не более 2-3 Гц).

Установка самостоятельно синхронизируется с сетью, для этого требуется раскрутить двигатель ГУ до номинальной частоты вращения и подать ток возбуждения.

Читайте так же:
Установка и регулировка сцепления зил 130

Недостаток способа – в некоторых случаях оборудование может выйти из строя из-за снижения напряжения на выводах.

Индукционный метод

Главные преимущества упомянутого метода перед другими ― короткий подготовительный этап и простота подключения. Для синхронизации не требуется соблюдать точное совпадение показателей напряжения, частот и фаз генераторов, входящих в систему, но применяется он только на автономных системах энергоснабжения.

Последовательность действий: генераторная установка приводится во вращение, возбуждение и подключение при достижении примерно одинаковых показателях напряжений и частоты. Дальнейший процесс синхронизации идет автоматически через сопротивление связи с сетью.

Параллельная работа генераторов.

1. Равенство напряжений работающего и подключаемого генератора.

2. Равенство их частот.

3. Совпадение порядка чередования фаз.

4. Равенство углов сдвига между ЭДС каждого генератора и напряжением на шинах, (последнее условие сводится к геометрически одинаковому положению роторов генераторов относительно обмоток своих статоров).

После подключения генератора на шины, при соблюдении всех вышеперечисленных условий синхронизации, его ЭДС равна по значению и противоположна по фазе напряжению сети, поэтому ток в цепи генератора равен нулю, т.е генератор работает без нагрузки. Механическая мощность приводного двигателя полностью затрачивается на покрытие потерь. Отсутствие тока в обмотке статора генератора приводит к тому, что обмотка статора не создает вращающегося магнитного поля и в генераторе действует лишь магнитное поле возбуждения, вращающееся вместе с ротором с угловой частотой, но не создающее электромагнитного момента. Если увеличить вращающий момент приводного двигателя, то ротор генератора, получив некоторое ускорение, сместится относительно своего первоначального положения на угол в направлении вращения. На такой же угол окажется сдвинутым вектор ЭДС генератора относи­тельно своего положения, соответствующего режиму холостого хода генератора. В результате в цепи статора появится результирующая ЭДС, которая создаст в цепи обмотки статора ток. Ток создает магнитное поле, вращающееся синхронно с ротором и создающее вместе с полем ротора, результирующее магнитное поле синхронной машины. Таким образом, с появлением тока в обмотке статора синхронного генератора, работающего параллельно с сетью, генератор получает электрическую нагрузку, а приводной дизель дополнительную механическую нагрузку. При этом механическая мощность приводного двигателя расходуется не только на покрытие потерь х.х генератора, но и частично преобразуется в электромагнитную мощность генератора. Следовательно, электромагнитная мощность синхронного генерато­ра представляет собой электрическую активную мощность, преобразованную из части механичес­кой мощности приводного двигателя. Активная мощность синхронного генератора, отдаваемая в сеть, меньше электромагнитной мощности на значение, равное сумме электрических потерь в обмотке статора и добавочных потерь при нагрузке.

Параллельная работа дизель-генераторов:

Для получения удовлетворительной параллельной работы дизель-генераторов переменного тока необходимо удостовериться, что выполняется требование согласованности регулятора оборотов дизеля и автоматического регулятора напряжения генератора.

Обслуживающий персонал должен иметь четкое представление, что такое активная и реактив­ная мощность и какие устройства контролируют распределение соответствующей нагрузки между дизель-генераторами.

Для многих электромехаников, первый раз имеющих с этим дело, или работавших на судах, с генераторами постоянного тока, эти вопросы зачастую вызывают проблемы, и данная инструкция призвана помочь ответить на многие неясные вопросы.

Синхронизация, подключение генератора на шины обычно не вызывают проблем пока регуля­торы оборотов дизеля, регуляторы напряжения генератора и все электрические контактные сое­динения находятся в нормальном рабочем состоянии. Однако, если регулятор оборотов дизеля, к примеру, работает неправильно, то это является причиной колебания частоты и синхронизировать генератор будет очень трудно, хотя и нужно попытаться. Синхронизация, при неправильных усло­виях ввода генераторов на параллельную работу, может стать причиной обесточивания судна, со всеми вытекающими из этого последствиями, в чем могли убедиться многие электромеханики. Синхронизация, при нарушении условия совпадения по фазе, вызывает увеличение напряжения в обмотке возбуждения, которое при определенных условиях может вызвать выход из строя главного выпрямителя.

Распределение активной нагрузки (kW)

Когда генераторы синхронизированы и подключены на шины, они становятся электрически соеди­ненными вместе, а это значит, что напряжение и частота одинаковы для всех генераторов, подклю­ченных в параллель. Увеличение подачи топлива на одном дизеле, не будет причиной повышения частоты, соединенного с ним генератора, относительно других. Результат увеличения подачи топ­лива может быть следствием принятия на себя большей части от общей активной нагрузки одним из генераторов, в то же время вызывая небольшое повышение частоты на шинах. После подключе­ния генератора на параллельную работу, активная (kW) нагрузка распределяется между работаю­щими генераторами вручную, соответствующими регуляторами оборотов дизеля на панели ГРЩ.

Дальнейшее распределение активной нагрузки при любых изменениях осуществляются автоматически, при условии правильно настроенных регуляторах дизелей! Это автоматическое распределение активной нагрузки обусловлено наклоном характеристики регулятора оборотов дизеля, который уменьшает частоту вращения (около 4% без нагрузки) и увеличивает частоту вращения при полной нагрузке. Например, если на ненагруженном дизеле частота 62 Гц, то при полной загрузке частота будет около 59.5 Гц.

Если у ненагруженного и полностью нагруженного дизеля изменение частоты вращения происходит одинаково для всех машин, то и распределение активной нагрузки между ними будет одинаковым.Если изменение частоты вращения неодинаково, то и распределение наг­рузки будет не синхронным.

Читайте так же:
Проверка и регулировка рулевого управления на стенде

Для того, чтобы определить правильно ли происходит уменьшение частоты вращения дизеля, рассмотрим следующий пример: допустим, что работает один генератор (назовем его №1), он полностью нагружен и его частота равна 61 Гц. Проверим падение частоты, при вводе на парал­лельную работу генератора №2 (ненагруженного, но уже подключенного на шины). Распределе­ние нагрузки будет осуществляется только с помощью регулятора частоты вращения дизеля №2, поэтому частота на шинах все еще 61 Гц и ваттметр ДГ№2 показывает почти нулевую нагрузку. При воздействие на регулятор оборотов ДГ№2, нагрузка с ДГ№1 будет переходить на ДГ№2, изменяя подачу топлива на ДГ№1, когда ваттметр ДГ№1 покажет «О», нагрузка полностью перейдет на ДГ№2 и мы можем проверить частоту на шинах, она будет около 58.5 Гц или на 4% ниже первоначального значения.

Также может быть проверен другой дизель и если уменьшение частоты вращения при полной нагрузке у разных машин не одинаково, то необходимо настраивать регуляторы оборотов дизелей. Другой, заслуживающий внимания момент, это демпфирование. Если демпфирование слишком слабoe, есть опасность, что стрелка ваттметра начнет колебаться из-за того, что регуляторы будут стремиться погасить внезапные забросы нагрузки. Неустойчивое колебание нагрузки, определяемое по стрелке ваттметра и вызванное нестабильностью регуляторов дизелей, может в конце концов привести к полному обесточиванию судна! Люфт, мертвый ход, или износ в регуляторе оборотов дизеля, может привести тому же самому результату.

Распределение реактивной нагрузки (kVAr)

Хорошо известно, что в источниках переменного тока нагрузка не чистая активная (kW), a сумма активной и реактивной (kVar) нагрузки.

Активнаянагрузка, измеряемая в (kW), это мощность, развиваемая дизелями и передаваемая потребителям электроэнергии (электродвигателям, источникам тепла, лампам и т.д) и в дальнейшем, преобразованная в крутящий момент, тепло и свет.

Реактивнаянагрузка, измеряемая в (kVAr), включает в себя магнитные силы в электродвигателях, трансформаторах и т.д. Величина реактивной мощности не влияет наактивную нагрузку, а это значит, что дизеля не воспринимают высокую или низкую величину реактивной мощности. Для генератора, однако, эта нагрузка очень важна, как общая нагрузка!

Общаянагрузка, называемая так же мнимая (кажущаяся), измеряется в (kVA). Реактивная нагрузка должна быть равномерно распределена между генераторами, и это распределение регулируется тематически регуляторами напряжения генераторов!

Как это происходит: мы знаем, что когда генераторы работают нормально, их напряжения могут изменяться в незначительной степени от значения регулируемого реостатом на контрольной плате регулятора напряжения. Любые попытки выполнить то же самое на, работающих в параллели генераторах, не будут вызывать изменения напряжения в соответствующем генераторе, подключенном на общую шину, и конечно, следует устанавливать равные значения напряжения генераторов, единственный результат этой попытки, это изменение фактора мощности определенного генератора, т.е распределение их общей реактивной нагрузки, вместе с понижением или повышением напряжения на шинах. Следовательно, когда генераторы работают в параллельном режиме, определение реактивной нагрузки может быть выставлено подстроечным потенциометром на самом регуляторе напряжения (на некоторых судах он выведен прямо в генераторную секцию ТЩ). Последующее увеличение реактивной нагрузки должно быть автоматически перераспределено между работающими генераторами. Это достигается путем увеличения или уменьшения напряжения в регуляторе, что соответственно уменьшает или увеличивает реактивную нагрузку.

Защита генераторов.

U/S (Under Speed)- это защита генератора от перевозбуждения, при снижении оборотов дизеля. Когда обороты дизеля уменьшаются до значений, установленных на подстроечном сопротивлении U/S, загорается красный светодиод и напряжение генератора начинает уменьшаться до значения 10В. на 1Гц.

Для того, чтобы правильно настроить защиту от перевозбуждения, необходимо: запустить дизель, вывести его на номинальные обороты 60Гц и затем уменьшить на 6Гц частоту вращения, т.е по­лучить 54Гц на шинах ГРЩ. Затем необходимо потенциометром U/S добиться загорания красного светодиода. После этого снова вывести дизель на номинальные обороты 60Гц и потенциометр U/S больше никогда больше не перестраивать!

STABILITY- сопротивление для устойчивости. Предназначено для удержания постоянного напряжения, при повышении или понижении нагрузки. Регулировка потенциометра "STAB" может быть осуществлена только для генератора, работающего на холостом ходу и заключается в следующем: устанавливаем потенциометр в среднее положение и начинаем медленно вращать по часовой стрелке, при этом чувствительность дизеля возрастает, и напряжение начинает колебаться. Вращение против часовой стрелки от среднего положения уменьшает чувствительность дизе­ля, и колебания напряжения уменьшаются. Регулировку производить крайне осторожно, из-за возможного большого падения напряжения при увеличении нагрузок самоиндукции. Возникновение э.д.с. в электрической цепи в результате изменения магнитного потока, создава­емого током, в той же самой цепи, называется самоиндукцией.

VOLT- сопротивление для регулировки напряжения, работает в паре с дополнительным подстроечным резистором, расположенном на самом регуляторе напряжения, или на генератор­ных панелях ГРЩ. Регулировка потенциометра "VOLT" следующая: вывести дизель на номи­нальные обороты, перевести потенциометры (VOLT) в среднее положение, отрегулировать напряжение генератора (Ux.x должно быть равно 450-452В), дополнительным потенциометром на ГРЩ или на регуляторе добиться наиболее точных значений.

Все регулировки U/S, STAB, VOLT должны производится без нагрузки на генераторе, с выключенным автоматом, т.е на холостом ходу.

P/F — сопротивление для регулировки реактивной нагрузки при параллельной работе генера­торов. Регулировка потенциометра "P/F" следующая: выравниваем активную нагрузку на всех работающих генераторах, сравнивая показания щитовых амперметров (кА) на ГРЩ. На регуляторе генератора, требующего регулировки, переводим потенциометр в среднее положение и начинаем вращение против часовой стрелки, следя по кА за чувствительностью потенциометра. Вращение потенциометра по часовой стрелке уменьшает реактивную нагрузку соответствующего генера­тора. Регулировкой P/F добиться равномерного распределения реактивной нагрузки между всеми, работающими генераторами, при одинаковой активной нагрузке!

Читайте так же:
Регулировка клапанов sonata beta

Требования к береговому электроснабжению.

Во время питания электрооборудования судна с берега:

1. Обращать особое внимание на состояние и параметры электрооборудования обеспечивающего питание с берега (клеммы, АВ, контакторы, кабель, и т.д).

2. Обеспечивать постоянный контроль суммарного тока нагрузки судовых потребителей.

3. Рассчитывать предполагаемую нагрузку, до подключения потребителей.

4. Обеспечивать постоянный контроль температуры кабеля берегового питания

5. Исключить возможность механических воздействий и повреждения кабеля берегового питания

6. Производить обозначение кабеля берегового питания соответствующими табличками.

7. При наличии на ГРЩ переключателя берегового питания на шины 440В и 220В обращать внимание на его положение

8. Если напряжение СЭС составляет 440В, то перед тем как перейти на береговое питание 380В, производить переключение обмоток трансформаторов освещения, если предусмотрено, в целях повышения вторичного напряжения до 220В. Перед переходом на СЭС не забывать восстанавливать схему соединения обмоток.

129. Параллельная работа синхронных генераторов

Для включения синхронного генератора на параллельную работу необходимо выполнить следующие условия:

1. Напряжение подключаемой машины должно быть равно напряжению сети или работающей машины.
2. Частота подключаемого генератора должна быть равна частоте сети.
3. Напряжения всех фаз подключаемой машины должны быть противоположны по фазе напряжениям соответствующих фаз сети или работающей машины.
4. Для подключения на параллельную работу трехфазного синхронного генератора необходимо также обеспечить одинаковое чередование фаз подключаемой машины и сети.

Подготовку к включению на параллельную работу синхронного генератора ведут следующим образом. Приводят во вращение первичный двигатель и регулируют его скорость вращения так, чтобы она была примерно равна номинальной. Затем возбуждают генератор и, следя за показаниями вольтметра, под-

ключенного к зажимам статора, регулируют напряжение машины при помощи реостата в цепи возбуждения до тех пор, пока оно не станет равным напряжению сети. Воздействуя на регулятор первичного двигателя и наблюдая за показаниями частотомера, устанавливают более точно скорость машины так, чтобы частота генератора была равна частоте сети. Тем самым первое и второе условия для включения на параллельную работу будут выполнены.

Для выполнения третьего условия, а также для установления полного равенства частот служат фазные лампы. Фазные лампы для машин однофазного тока включаются по двум схемам: на потухание (фиг. 255, а) и на горение (фиг. 255, б). При совпадении фаз сети и машины лампы, включенные по схеме а, погаснут, а по схеме б будут гореть полным накалом. В этот момент и нужно включить рубильник генератора.

Для машин трехфазного тока фазные лампы включаются также по двум схемам: на потухание (фиг. 256, а) и на вращение света (фиг. 256, б). Лампы, включенные по схеме а, при одинаковом чередовании фаз сети и машины будут сначала быстро и одновременно мигать, затем мигание их становится все реже и реже и, когда лампы медленно погаснут, нужно включить рубильник генератора.

Для более точного определения момента включения рубильника часто ставят так называемый нулевой вольтметр, имеющий двустороннюю шкалу.

При одинаковом чередовании фаз сети и машины лампы, включенные по схеме б, будут мигать поочередно, и если их расположить по кругу, то получится впечатление вращающегося света. Скорость вращения света зависит от разности частот. Генератор нужно включить в момент, когда лампы, включенные накрест, загорятся полным накалом, а третья лампа погаснет. Иначе говоря, рубильник удобнее включить в момент, когда меняется направление вращения света.

При неодинаковом порядке чередования фаз лампы, включенные по схеме а, дадут вращение света, а по схеме б будут одновременно загораться и потухать. Для изменения порядка чередования фаз машины два любых ее провода, подходящие к рубильнику, нужно поменять местами.

Включение фазных ламп высоковольтных генераторов осуществляется через измерительные трансформаторы напряжения (гл. четырнадцатая, 171).

Таким образом, с помощью фазных ламп мы можем определить противоположность фаз, установить равенство частот и порядок чередования фаз сети и подключаемой машины. Чередование фаз машины можно также определить, пользуясь особым прибором — фазоуказателем, представляющим собой небольшой асинхронный двигатель-Направление вращения диска фазоуказателя показывает порядок чередования фаз.

Когда синхронный генератор работает параллельно с сетью, скорость вращения его остается постоянной, равной синхронной.

Процесс подготовки генератора для включения его на параллельную работу называется синхронизацией.

В последние годы получил распространение метод включения синхронных генераторов на параллельную работу, называемый самосинхронизацией. Сущность этого метода заключается в следующем. Первичным двигателем разворачивают генератор и устанавливают приблизительно синхронную скорость. Замыкают обмотку возбуждения на дополнительное

сопротивление, равное 3—5-кратному значению ее сопро тивления. Включают рубильник, соединяющий генератор с сетью. Переключают обмотку возбуждения с дополнительного сопротивления к питающему ее источнику постоянного напряжения. После этого генератор сам входит в синхронизм.

Читайте так же:
Регулировка карбюраторов на зефире

Проделаем следующий опыт. В цепь статора синхронного генератора включим амперметр, ваттметр и фазометр. В цепь возбуждения генератора включим амперметр. Включим гене-

ратор на параллельную работу и дадим ему некоторую активную нагрузку. Увеличивая ток возбуждения при помощи реостата в цепи возбуждения, будем наблюдать показания приборов. Оказывается, что активная мощность, отдаваемая генератором в сеть, остается практически постоянной и во время опыта ваттметр будет давать неизменные показания. При неизменной активной нагрузке ток в цепи статора при некотором значении тока возбуждения получается минимальным. Это соответствует чисто активному току нагрузки генератора ( =1). Если к генератору подключить различные активные нагрузки, то каждому значению активной нагрузки будет соответствовать определенный ток возбуждения, при котором =1. При увеличении тока возбуждения сверх этого значения возникает отстающий реактивный ток. Фазометр будет показывать уменьшение и генератор будет отдавать в сеть отстающую реактивную мощность. Наоборот, если уменьшать ток возбуждения и сделать его меньшим указанного значения, то появится опережающий реактивный ток. Фазометр снова покажет уменьшение , и генератор будет для создания своего вращающегося поля потреблять из сети отстающую реактивную мощность.

Зависимость тока статора (якоря) синхронного генератора от тока возбуждения при постоянной активной мощности называется U-образной характеристикой машины, получившей свое название за внешний вид кривой, напоминающей букву U. На фиг. 257 показана U-образная характеристика синхронного генератора.

5 Апрель, 2009 69257 Печать

Параллельная работа генераторов

Особенности параллельной работы генераторов

ООО «ЭК Прометей» предупреждает: Параллельная работа генераторов – не такое лёгкое решение, каким может показаться непросвещённым пользователям.

Казалось бы: мощности старого генератора недостаёт, подключи параллельно второй – и всё, проблема решена! Но не все так просто.

Грубо запараллелив два генератора, пользователь столкнется с тем, что напряжение в сети упадёт!

Никакой мистики: происходит это из-за несовпадения фаз переменного тока от двух миниэлектростанций. Вместо того, чтоб помогать друг другу, они взаимно будут мешать друг другу, если их правильно не синхронизировать.

Однако, параллельная работа генераторов — верное решение задачи повышения эффективности энергоснабжения.

Давайте разберем проблему пошагово

  • Дизель-генератор есть, но энергопотребление растет и его мощности уже недостает. Требуется увеличить мощность.
  • Есть несколько, к примеру, дизельных микроэлектростанций, и вы хотите объединить их мощность для питания одного энергоёмкого объекта.
  • Вы хотите решительно устранить внезапные сбои в электроснабжении, когда, к примеру, ваш единственный дизель-генератор вдруг заглохнет в самый неподходящий момент.

Конечно, чтобы просто увеличить мощность, можно купить более мощный генератор, и дело с концом. Но это не решит проблему форс-мажора при внезапном выходе из строя единственного безальтернативного источника питания.

Для решения проблем в комплексе может быть только один выход: синхронизировать синусоиды токов двух-трех генераторов так, чтобы они идеально совпадали.

Проще всего, когда все два-три генератора расположены на одном валу, но этот вариант придётся сразу отбросить: мы исходим из жизненных реалий, когда у нас есть 2-3 отдельных, самостоятельных, независимых генератора, причем разных: один бензиновый, другой дизельный, третий от ветряка – и т.д. Причем все разной мощности. Вот это задачка не для средних умов.

Получается, наша задача – создать энергокомплекс из нескольких генераторов, работающих синхронно на общую нагрузку.

ООО «ЭК Прометей» занимается продажей дизельных генераторов и оказанием сопутствующих услуг. Оформите заказ онлайн или по телефону:

Порядок работы

  • Самый мощный генератор договариваемся считать основным, его запускаем в первую очередь. Когда он стабилизируется по оборотам и напряжению, подключаем его к главной силовой шине.
  • Вторую станцию тоже запускаем, синхронизируем с основной и тоже подключаем к общей шине. О том, как именно производим синхронизацию – разговор отдельно ниже.

В зависимости от потребностей, второй генератор можно остановить (когда нагрузка уменьшается) или вновь запустить (при ее росте).

Идеально, если контроль за синхронизацией дополнительного генератора ведет АСУ — автоматическая система управления. Она и корректирует параметры в зависимости от потребляемого тока.

Преимущества комплексов с АСУ

Параллельно установленные ДГУ

Лучше всего работают АСУ на базе импортных контроллеров AGC от Deif, контакторов ABB и Sсhneider Electric. Они отслеживают рабочие характеристики, распределяют нагрузку, задают синхронизацию.

Почему энергокомплекс лучше, чем единичная электростанция?

Электроагрегаты небольшой мощности не требуют грузоподъемного оборудования при перевозке и монтаже.

Энергокомплекс в любой момент можно развернуть, подключив еще дизель-генераторов.

Синхронизированную группу генераторов можно разделять. Тогда каждый из генераторов будет работать самостоятельно, на разных объектах.

Работа энергосистемы не прекратится при отказе одной из станций.

Можно отремонтировать вышедший из стоя один генератор, не прекращая работу всего комплекса — остальные станции будут продолжать вырабатывать ток.

Несколько небольших установок будут стоить дешевле, чем одна электростанция большой мощности. Цена получится ниже на всех этапах: от покупки, монтажа до эксплуатации, сервиса.

Ресурс каждого из генераторов увеличится, благодаря равномерному распределению нагрузки между станциями.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector